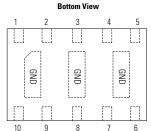
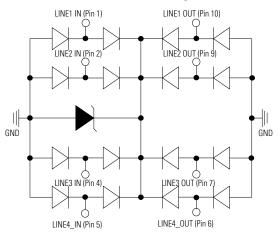

SP2574NUTG 2.5V 40A Diode Array


OBSOLETE DATE: 12/31/2020 PCN/ECN# ESU270-49 REPLACED BY: SP2555NUTG or AQ2555NUTG


Pinout

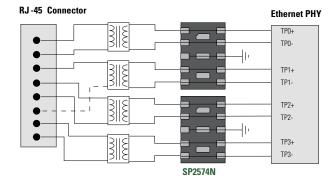
Note: PIN3, PIN8 are same potential with GND

Functional Block Diagram

Description

The SP2574NUTG is a low-capacitance, TVS Diode Array designed to provide protection against ESD (electrostatic discharge), CDE (cable discharge events), EFT (electrical fast transients), and lightning induced surges for high-speed, differential data lines. It's packaged in a µDFN package (3.0 x 2.0mm) and each component can protect up 4 channels or 2 differential pairs, up to 40A (IEC 61000-4-5) and up to 30kV ESD (IEC 61000-4-2). The "flow-through" design minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design.

The SP2574NUTG with its low capacitance and low clamping voltage makes it ideal for high-speed data interfaces such as 1GbE applications found in notebooks, switches, etc.


Features & Benefits

- ESD, IEC 61000-4-2, ±30kV contact, ±30kV air
- EFT, IEC 61000-4-4, 40A (5/50ns)
- Lightning, 40A (8/20µs as defined in IEC 61000-4-5 2nd Edition)
- Low capacitance of 3.8pF@0V (TYP) per I/O
- Low leakage current of 0.1μA (TYP) at 2.5V
- µDFN-10 package is optimized for high-speed data line routing
- Provides protection for two differential data pairs (4 channels) up to 40A
- Low operating and clamping voltage
- AEC-Q101 qualified

Applications

- 10/100/1000 Ethernet
- WAN/LAN Equipment
- Desktops, Servers and Notebooks
- LVDS Interfaces
- Integrated Magnetics
- Smart TV

Application Example

Life Support Note:

Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

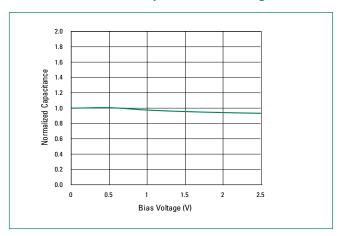
Absolute Maximum Ratings

Symbol	Parameter	Value	Units
I _{PP}	Peak Current (t _n =8/20µs)	40 1	А
P_{Pk}	Peak Pulse Power (t _p =8/20µs)	1000	W
T _{op}	Operating Temperature	-40 to 125	°C
T _{STOB}	Storage Temperature	-55 to 150	°C

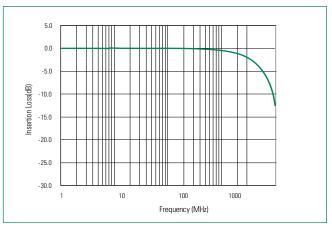
Notes:

1. Rating with 2 pins connected together per sugguested diagram (For example, pin1 is connected to pin 10, pin 2 is connected to Pin 9, Pin 4 is connected to pin 7 and pin 5 is connected to pin 6)

Caution: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the component. This is a stress only rating and operation of the component at these or any other conditions above those indicated in the operational sections of this specification is not implied.

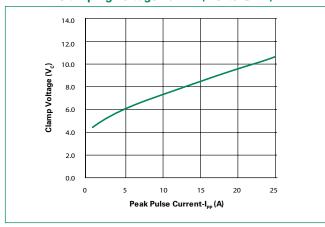

Electrical Characteristics (T_{OP}=25°C)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Reverse Standoff Voltage	V_{RWM}	I _R ≤ 1μA			2.5	V
Reverse Leakage Current	I _R	$V_{RWM} = 2.5V, T = 25^{\circ}C$		0.1	0.5	μΑ
Breakdown Voltage	V_{BR}	$I_{t1} = 1\mu A$	3.0	3.7	4.5	V
Snap Back Voltage	V _{SB}	$I_{H} = 1 \text{mA}$	3.0			V
Clamp Voltage		$I_{pp} = 1A$, $t_p = 8/20 \mu s$ Any I/O to Ground			4.5	
		$I_{PP} = 10A$, $t_p = 8/20 \mu s$ Any I/O to Ground			7.5	V
	V _c	$I_{pp} = 25A, t_p = 8/20\mu s$ Any I/O to Ground $I_{pp} = 40A, t_p = 8/20\mu s$			12.0	
		$I_{pp} = 40A$, $t_{p} = 8/20\mu s$ Line-to-Line ¹ , two I/O Pins connected together on each line			20.0	
Dynamic Resistance ²	R _{DYN}	TLP, t _p =100ns, Any I/O to Ground		0.13		Ω
ESD Withstand Voltage	\/	IEC 61000-4-2 (Contact)	±30		kV	
	V _{ESD}	IEC 61000-4-2 (Air)	±30		kV	kV
Diode Capacitance	C _{I/O to GND}	Between I/O Pins and Ground $V_R = 0V$, $f = 1MHz$		3.8	5.0	pF
	C _{I/O to I/O}	Between I/O Pins $V_R = 0V$, $f = 1MHz$		1.7		pF

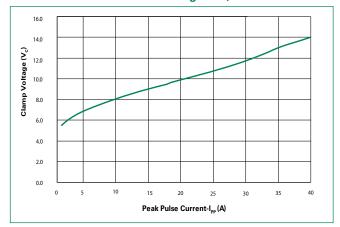

Notes:

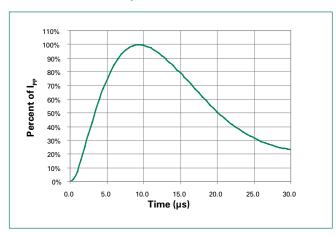
- 1. Rating with 2 pins connected together per sugguested diagram (For example, pin1 is connected to pin 10, pin 2 is connected to Pin 9, Pin 4 is connected to pin 7 and pin 5 is connected to pin 6)
- 2. Transmission Line Pulse (TLP) with 100ns width, 2ns rise time, and average window t1=70ns to t2= 90ns

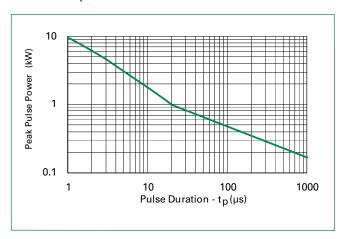
Normalized Capacitance vs. Voltage

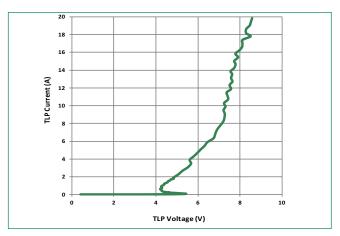


Insertion Loss (S21)



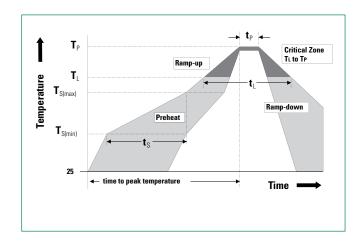

Clamping Voltage vs. IPP (I/O to GND)


Clamping Voltage vs. IPP (Line-to-Line, Two I/O Pins Connected Together)


8/20µs Pulse Waveform

Non-Repetitive Peak Pulse Power vs. Pulse Time

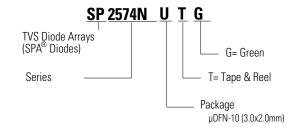
Transmission Line Pulse (TLP)



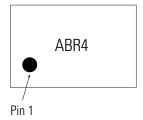
SP2574NUTG 2.5V 40A Diode Array

Soldering Parameters

Reflow Cond	Pb – Free assembly		
Pre Heat	-Temperature Min (T _{s(min)})	150°C	
	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ram	3°C/second max		
$T_{S(max)}$ to T_L - I	3°C/second max		
Reflow	- Temperature (T _L) (Liquidus)	217°C	
	- Temperature (t _L)	60 – 150 seconds	
Peak Temper	260+0/-5 °C		
Time within 5°C of actual peak Temperature (tp)		20 - 40 seconds	
Ramp-down Rate		6°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not excee	260°C		

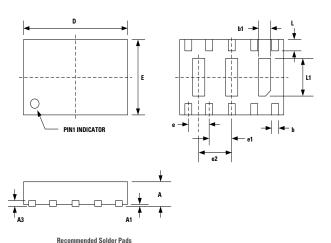

Product Characteristics

Lead Plating	Pre-Plated Frame
Lead Material	Copper Alloy
Lead Coplanarity	0.004 inches(0.102mm)
Substrate material	Silicon
Body Material	Molded Compound
Flammability	UL Recognized compound meeting flammability rating V-0

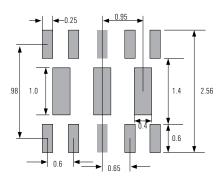

Ordering Information

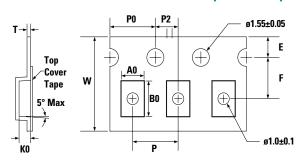
Part Number	Package	Min. Order Qty.
SP2574NUTG	μDFN-10 (3.0x2.0mm)	3000

Part Numbering System

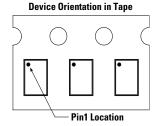

Part Marking System

SP2574NUTG 2.5V 40A Diode Array


Package Dimensions - µDFN-10 (3.0x2.0mm)


Package	μDFN-10 (3.0x2.0mm)						
JEDEC	MO-229						
Symbol	Millimeters			Inches			
Зуппрог	Min	Nom	Max	Min	Nom	Max	
Α	0.50	0.60	0.65	0.020	0.024	0.026	
A1	0.00	0.03	0.05	0.000	0.001	0.002	
А3	0.15 Ref			0.006 Ref			
b	0.15	0.20	0.25	0.006	0.008	0.010	
b1	0.25	0.35	0.45	0.010	0.014	0.018	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	1.90	2.00	2.10	0.075	0.079	0.083	
е		0.60 BSC		0.	024 BSC		
e1	0.65 BSC			0.	026 BSC		
e2	0.95 BSC			0.037			
L	0.25	0.30	0.35	0.010	0.012	0.014	
L1	0.95	1.00	1.05	0.037	0.039	0.041	

Notes:


- All dimensions are in millimeters
- Dimensions include solder plating.
 Dimensions are exclusive of mold flash & metal burr

Tape & Reel Specification — µDFN-10 (3.0x2.0mm)

Package	μDFN-10 (3.0x2.0mm)		
Symbol	Millimeters		
Α0	2.30 +/- 0.10		
В0	3.20 +/- 0.10		
E	1.75 +/- 0.10		
F	3.50 +/- 0.05		
K0	1.0 +/- 0.10		
Р	4.00 +/- 0.10		
P0	4.00 +/- 0.10		
P2	2.00 +/- 0.10		
Т	0.3 +/- 0.05		
W	8.00 + 0.30 /- 0.10		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

