
THD3C42A0

Wiring Diagram

Description

The THD3C42A0 combines accurate timing circuitry with high power, solid-state switching. It can switch motors, lamps, and heaters directly without a contactor. The THD3C42A0 has equal on and off time delays. A single R_T sets both time delays. You can reduce labor, component cost, and increase reliability with these small, easy-to-use, Digi-Power timers.

Operation (Recycling Flasher - ON Time First)

Upon application of input voltage, the output energizes and the T1 ON time begins. At the end of the ON time, the output de-energizes and the T2 OFF time begins. At the end of the OFF time, the output energizes and the cycle repeats as long as input voltage is applied.

Reset: Removing input voltage resets the output and time delays, and returns the sequence to T1 ON time.

Operation (Recycling Flasher - OFF Time First)

Upon application of input voltage, the T2 OFF time begins. At the end of the OFF time, the T1 ON time begins and the load energizes. At the end of T1, T2 begins and the load de-energizes. This cycle repeats until input voltage is removed.

Reset: Removing input voltage resets the output and the sequence to T2 OFF time.

Features & Benefits

FEATURES	BENEFITS
Microcontroller based	Repeat Accuracy + / -0.5%, Factory calibration + / - 1%
Compact, low cost design	Allows flexiblility for OEM applications and reduces labor and component costs
High load currents up to 20A, 200A inrush	Allows direct operation of motors, lamps, and heaters without a contactor
Totally solid state and encapsulated	No moving parts to arc and wear out over time and encapsulated to protect against shock, vibration, and humidity
Metalized mounting surface	Facilitates heat transfer in high current applications

Accessories

P1004-95, P1004-95-X Versa-Pot

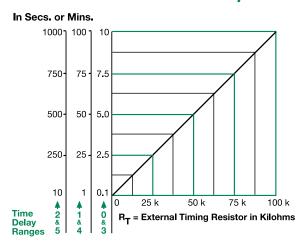
Panel mountable, industrial potentiometer recommended for remote time delay adjustment.

P0700-7 Versa-Knob

Designed for 0.25 in (6.35 mm) shaft of Versa-Pot. Semi-gloss industrial black finish.

P1015-13 (AWG 10/12), **P1015-64** (AWG 14/16) **Female Quick Connect**

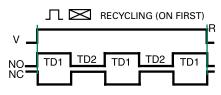
These 0.25 in. (6.35 mm) female terminals are constructed with an insulator barrel to provide strain relief.

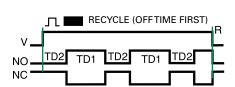

P1015-18 Quick Connect to Screw Adapter

Screw adapter terminal designed for use with all modules with 0.25 in. (6.35 mm) male quick connect terminals.

THD3C42A0

External Resistance vs. Time Delay


This chart applies to externally adjustable part numbers.


The time delay is adjustable over the time delay range selected by varying the resistance across the R_T terminals; as the resistance increases the tie delay increases.

When selecting an external R_T, add the tolerances of the timer and the R_T for the full time range adjustment

Examples: 1 to 50 S adjustable time delay, select time delay range 1 and a 50 K ohn R_T . For 1 to 100 S use a 100 K ohm R_T .

Function Diagrams

V = Voltage

NO = Normally Open Contact

NC = Normally Closed Contact TD1, TD2 = Time Delay

R = Reset

Specifications

Time Delay

Range 0.1s - 1000m in 6 adjustable ranges or fixed Adjustment Single variable resistor changes both the on & off times equally

Repeat Accuracy ±0.5% or 20ms, whichever is greater

Tolerance

(Factory Calibration) ≤ ±1% **Reset Time** ≤ 150ms

Time Delay vs Temp.

& Voltage $\leq \pm 2\%$

Input

Voltage 24, 120, or 230VAC

Tolerance ±20% **AC Line Frequency** 50/60 Hz **Power Consumption** $\leq 2VA$

Output

Type Solid state **Maximum Load Current**

Steady State Inrush** 20A 200A

Minimum Load Current 100mA

Voltage Drop

≈ 2.5V at rated current **OFF State Leakage Current** ≅ 5mA @ 230VAC

Protection

Circuitry Encapsulated

Dielectric Breakdown ≥ 2000V RMS terminals to mounting surface

 $\geq 100 \ M\Omega$ **Insulation Resistance**

Mechanical

Mounting ** Surface mount with one #10 (M5 x 0.8) screw

Dimensions H 50.8 mm (2"); **W** 50.8 mm (2");

D 38.4 mm (1.51")

Termination 0.25 in. (6.35 mm) male quick connect terminals

Environmental

Operating/Storage

Temperature -40° to 60° C / -40° to 85° C Humidity 95% relative, non-condensing

Weight $\approx 3.9 \text{ oz } (111 \text{ g})$

^{**}Must be bolted to a metal surface using the included heat sink compound. The maximum mounting surface temperature is 90°C. Inrush: Non-repetitive for 16ms.