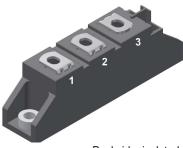


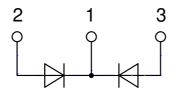
HiPerFRED Module

 $V_{RRM} = 400 V$


 $I_{FAV} = 2x 150 A$

 t_{rr} = 40 ns

Common Cathode


Part number

MEK150-04DA

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

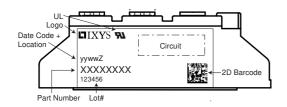
- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

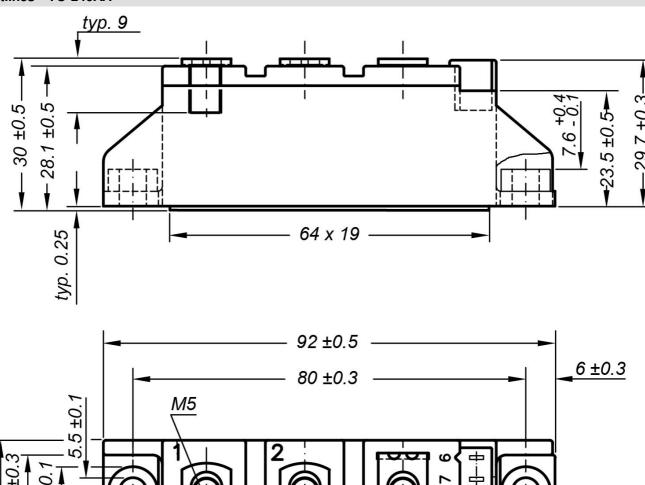
Disclaimer Notice

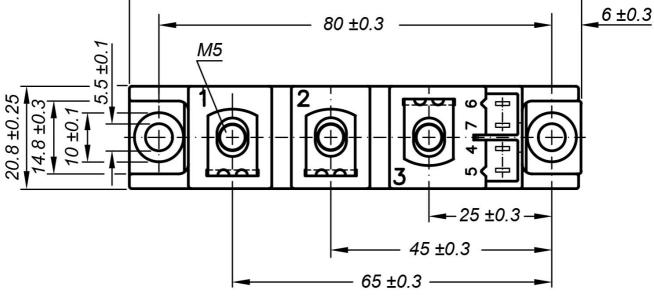
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

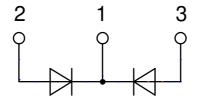


Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			400	V
V _{RRM}	max. repetitive reverse blocking vo	oltage	$T_{VJ} = 25^{\circ}C$			400	V
I _R	reverse current, drain current	$V_R = 400 \text{ V}$	$T_{VJ} = 25^{\circ}C$			2	mA
		$V_R = 400 \text{ V}$	$T_{VJ} = 150^{\circ}C$			8,5	mΑ
V _F	forward voltage drop	I _F = 150 A	$T_{VJ} = 25^{\circ}C$			1,35	V
		$I_F = 300 \text{ A}$				1,63	٧
		I _F = 150 A	T _{VJ} = 150°C			1,09	V
		$I_F = 300 \text{ A}$				1,41	٧
I _{FAV}	average forward current	T _C = 100°C	$T_{VJ} = 175$ °C			150	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		$T_{VJ} = 175^{\circ}C$			0,73	٧
r _F	slope resistance	ss calculation only				2	mΩ
R _{thJC}	thermal resistance junction to case	9				0,35	K/W
R _{thCH}	thermal resistance case to heatsin	k			0,08		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			430	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			1,20	kA
C¹	junction capacitance	$V_R = 400 V$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		220		рF
I _{RM}	max. reverse recovery current		$T_{VJ} = 25^{\circ}C$		30		Α
		$I_F = 200 \text{ A}; V_R = 200 \text{ V}$	$T_{VJ} = 100$ °C		60		Α
t _{rr}	reverse recovery time	-di _F /dt = 600 A/μs	$T_{VJ} = 25^{\circ}C$		40		ns
	,	1	$T_{VJ} = 100$ °C		90		ns

Package TO-240AA			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		175	°C
T _{op}	operation temperature				-40		150	°C
T _{stg}	storage temperature				-40		125	°C
Weight						76		g
M _D	mounting torque				2,5		4	Nm
$\mathbf{M}_{\scriptscriptstyleT}$	terminal torque				2,5		4	Nm
d _{Spp/App}	creepage distance on surface striking dist	creepage distance on surface striking distance through a	terminal to terminal	13,0	9,7			mm
d _{Spb/Apb}			ce striking distance through air	terminal to backside	16,0	16,0		
V _{ISOL}	isolation voltage	t = 1 second	4800				٧	
1002		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA		4000			٧




Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MEK150-04DA	MEK150-04DA	Box	36	480086


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
I - V ₀)— <u>R</u> o	Fast Diode		
V _{0 max}	threshold voltage	0,73		V
$R_{0 \text{ max}}$	slope resistance *	1,3		$m\Omega$

Outlines TO-240AA

Fast Diode

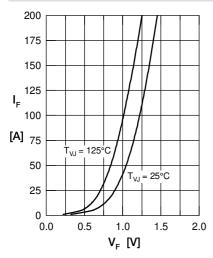


Fig. 1 Forward current I_F versus voltage drop V_F per leg