

Expertise Applied | Answers Delivered

IEC 62368-1 Overvoltage requirements

Consumer electronics 😭 Datacenter & cloud

Building automation

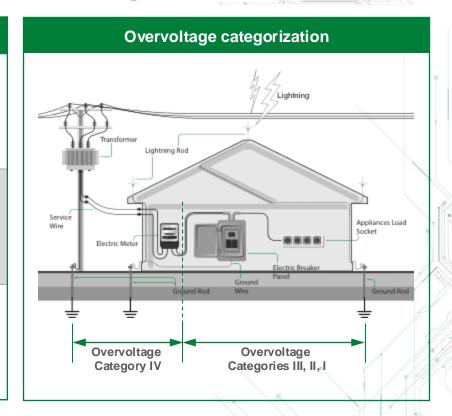
Appliances

Mobile & wearables

Users must independently evaluate the suitability of and test each product selected for their own specific applications. It is the User's sole responsibility to determine fitness force particular system or use based on their own performance criteria, conditions, specific application, compatibility with other parts, and environmental conditions. Users must independently provide appropriate design and operating safeguards to minimize any risks associated with their applications and products. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at littelfuse.com/disclaimer-electronics.

IEC 62368-1: Global safety standard applies to a wide range of electrical and electronic equipment up to 600 V

- UL/EN/CSA have created versions of 62368-1 based on IEC62368-1.
- Standards replaced by IEC 62368-1. All products, sub-assemblies, and components previously covered under these standards are covered under UL/IEC 62368-1.
- ‡ Other equipment comprises of two product types: products not covered under any product safety standard, such as smart IoT equipment, and products covered under various standards, such as battery-powered consumer electronic devices.


Minimum transient voltage withstand rating is determined by the AC mains voltage

Electrical and electronic equipment and transients

Transient voltages are determined based on the system voltage and where, in a distribution system, the equipment it is connected (overvoltage category)

PCs, routers, notebooks, tablets, and their power supplies fall within Overvoltage Category II

Table 12 in section 5.4 specifies the following: 120 VAC power supplies will need to withstand 1500 V_{pk} ; 240 VAC power supplies need to withstand 2500 V_{pk}

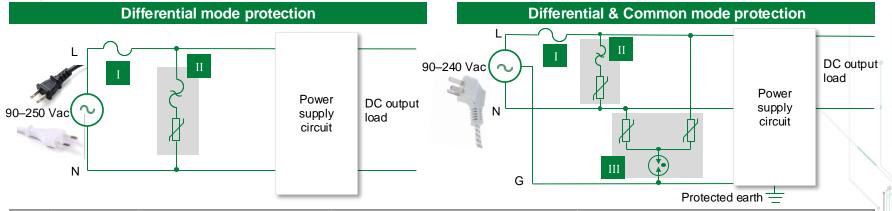
Additional tests included in the standard to ensure compliance when using varistors

Tests	Unreliable earth/ground bond Non-industrial plug examples	Reliable earth/ground bond ‡ Industrial plug examples
Varistor overload test * (Annex G.8.2.2)	✓	✓
Temporary overvoltage test † (Annex G.8.2.3)	✓	✓
Basic insulation requirement (Clause 5.4.9.1)	✓	Not required

Table notes: (Detailed list of tests provided in supplementary slide).

Abbreviation:

V_R: rated voltage of AC mains or upper voltage of AC mains voltage range.


^{*} Test not required if varistor voltage rating is greater than 2 x V_{R} .

 $^{^{\}dagger}$ Test not required if varistor voltage rating is (1.1 x V_R) + 1200 or greater.

[‡] Reliable earth: permanently connected equipment, cord connected mains equipment used in a location having equipotential bonding (restricted access area, telecommunication center, and others), or stationary pluggable equipment that has instructions for installation of the conductor to a building by a skilled person.

Solution recommendations for universal power adapters with two-prong and three-prong plugs

	Technology	Product series	Function in application	Benefits and considerations		
I	Fuse	<u>2153.15</u> *	Protects the power stage from overcurrent events	Small, through-hole device with high breaking capacity and high surge with stand capability		
		<u>39213150000</u>		Multiple ampere ratings in compact design		
II	TMOV	TMOV14RP300E*	Protects the power supply unit from voltage transients	Integrated thermal protection avoids overheating caused during abnormal voltage events; low energy let-through and damping voltage		
	MOV	<u>V10E420P</u>	and lightning. Meets minimum allowable MCOV (1.25 x	Smallest form-factor, higher clamping voltage than other solutions		
	SIDACtor® + MOV	P2300 + V10E300P	240 V). Exceeds minimum surge requirements of Overvoltage category II	Lowest leakage current (nA)		
	TVS Diode	AK3-380 C-Y	Overvoitage category ii	Best clamping and surge life		
III	MOV + GDT	<u>V10E300P</u> + <u>CG3 3.3</u> *	Protects the power supply unit from voltage transients and lightning. Meets requirements for common mode protection	Only permitted solution for common mode protection; lowest leakage current		

* This is the primary recommendation. Other products shown can be considered based on design requirements

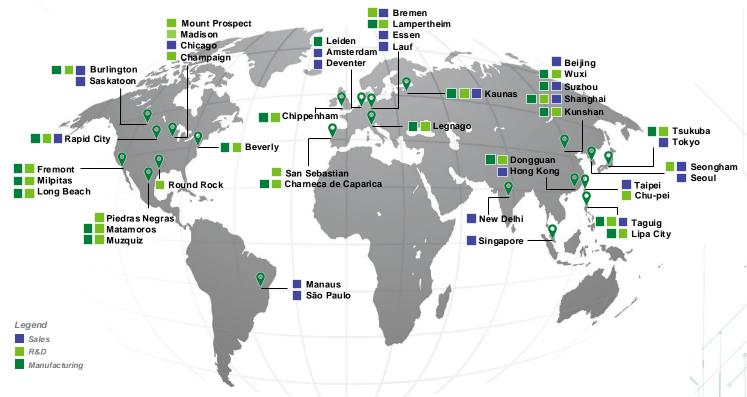
Surge protection solutions compared

Features	TMOV	MOV	SIDACtor™ + MOV	High Power TVS Diode	GDT + MOV
Suggested Protection Modes (When ground is unreliable)	L-L L-N	L-L L-N	L-L L-N	L-L L-N	L-G & N-G (Mains to PE)
Continuous voltage withstand rating	300 V	420 V	480 V (180 V + 300 V)	380 V	2940 V (2640 V + 300 V)
Clamping voltage (combination surge: 6 kV/3 kA)	1.18 kV	1.66 kV	1.3 kV*	520 V	1.3 kV
Let-through energy during surge event	N N	N N N	N N	M	M M
Leakage current	Medium (μA)	Medium (μΑ)	Low (nA)	Medium (µA)	Very low (pA)
Lifetime after multiple surge events	Good	Fair	Very Good	Excellent	Good
PCB footprint surface area		•		•	7
Price	\$\$	\$	\$\$\$	\$\$\$\$	\$\$

- TMOV is recommended for most differential mode protection applications.
- GDT + MOV is the recommended solution between mains and protective earth (per IEC 62368-1, clause 5.5.7).

Note:

^{*} Lower clamping is possible with use of a lower voltage MOV and higher rated SIDACtor. Requires review with agency providing certification to the standard


Additional information can be found at Littelfuse.com

Click on images to open the catalog

Local resources supporting our global customers

Partner for tomorrow's electronic systems

Broad product portfolio

A global leader with a broad product portfolio, covering every aspect of protection, sensing, and control

Application expertise

Our engineers partner directly with customers to help speed up product design and meet their unique needs

Global customer service

Our global customer service team is with you to anticipate your needs and ensure a seamless experience

We help customers in the design process to account for requirements set by global regulatory authorities

Testing capabilities

We help customers get products to market faster, we offer certification testing to global regulatory standards

Global manufacturing

High-volume manufacturing that is committed to the highest quality standards

This document is provided by Littelfuse, Inc. ("Littelfuse") for informational and guideline purposes only. Littelfuse assumes no liability for errors or omissions in this document or for any of the information contained herein. Information is provided on an "as is" and "with all faults" basis for evaluation purposes only. Applications described are for illustrative purposes only, and Littelfuse makes no representation that such applications will be suitable for the customer's specific use without further testing or modification. Littelfuse expressly disclaims all warranties, whether express, implied or statutory, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, and non-infringement. It is the customer's sole responsibility to determine suitability for a particular system or use based on their own performance criteria, conditions, specific application, compatibility with other parts, and environmental conditions. Customers must independently provide appropriate design and operating safeguards to minimize any risks associated with their applications and products. Read complete Disclaimer Notice at Ititelfuse.com/disclaimer-electronics.

Littelfuse.com