
Description

Littelfuse CH1B02xM current sensor is an open-loop Hall Effect device which provides a ratiometric output signal proportional to the magnetic flux density generated by a C-core concentrator. The sensor is offered in three configurations: standard connector, standard connector with cable retainer, and with CPA equipped connector.

Typical Application Diagram

Output Characteristics

Features

- Analog ratiometric output
- +5V DC unipolar power supply
- Operating temp. range: -40°C ... +125°C
- Open-loop Hall effect
- ASIL-QM
- Current measurement: up to ±1500A

Applications

- Inverter
- Starter Generator
- DC/DC Converter
- AC/DC Converter

Benefits

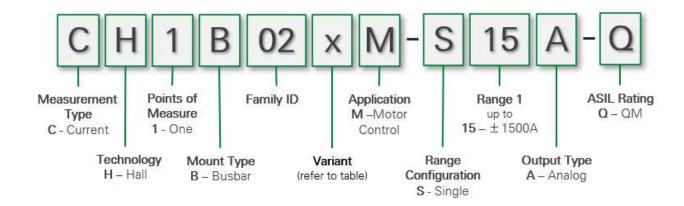
- High accuracy, non-intrusive solution
- Low thermal offset drift
- Low thermal sensitivity drift

Mechanical Characteristics

Case Material: PBT-GF30, UL94-V0

■ Mass: 60.5 g ± 5%

Busbar: Cu-ETP


Protection degree: IP4X (IEC 60529)

Mating Connector

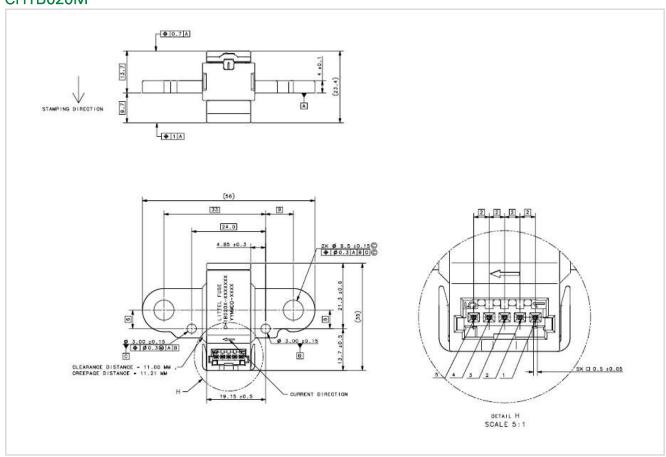
- CH1B020M / CH1B021MMolex DuraClik 5-way info pg.3-4
- CH1B022MTyco 4-way with CPA info pg.5

Littelfuse Current Sensor P/N Convention

Product Variants

Part Name	Config	Ref. Image
CH1B020M	Standard	
CH1B021M	Cable Retainer	
CH1B022M	CPA Connector	

Current Range Definition


Littelfuse offers customized calibration ranges.

Naming Examples:

Type Name	Current Range
CH1B02xM-S02A-Q	±200 A
CH1B02xM-S04A-Q	±400 A
CH1B02xM-S06A-Q	±600 A
CH1B02xM-S08A-Q	±800 A
CH1B02xM-S10A-Q	±1000 A
CH1B02xM -S12A-Q	±1200 A
CH1B02xM -S15A-Q	±1500 A

Current Sensor Dimensions (in mm)

CH1B020M

Remark

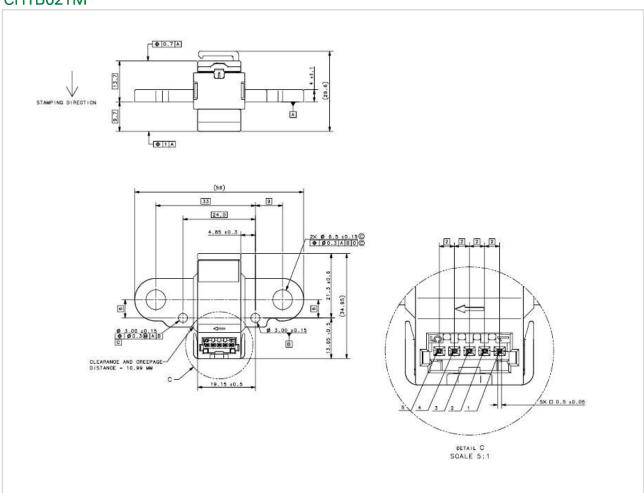
 $V_{out} > V_o$, when I_p flows in the positive direction (see current direction arrow on drawing).

Mating Connector

Molex DuraClik 5-Way – ISL Version

Housing 5W, Black: 5601230501Retainer 5W Gray: 5601250500

Terminal: 5601240101


Pinout

Pin No.	Signal	Description
1	VCC	+5V Power supply
2	OUTPUT 1	Channel 1 OUT
3	GND	Ground
4	OUTPUT 2	Channel 2 OUT
5	NO CONN	Not Connected

Current Sensor Dimensions (in mm)

CH1B021M

Remark

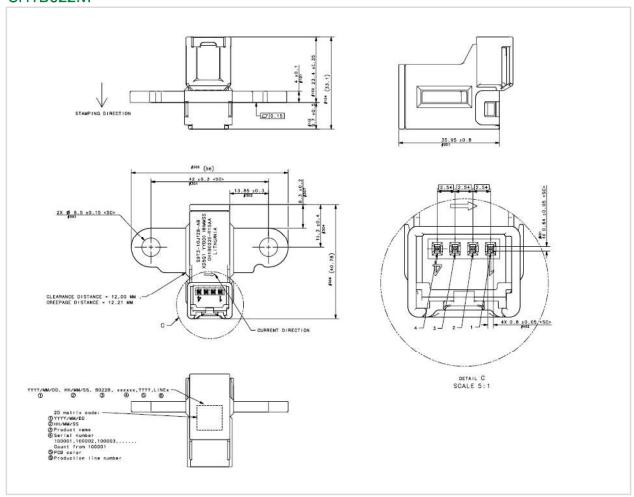
 $V_{out} > V_o$, when I_p flows in the positive direction (see current direction arrow on drawing).

Mating Connector

Molex DuraClik 5-Way – ISL Version

Housing 5W, Black: 5601230501Retainer 5W Gray: 5601250500

Terminal: 5601240101


Pinout

Pin No.	Signal	Description
1	VCC	+5V Power supply
2	OUTPUT 1	Channel 1 OUT
3	GND	Ground
4	OUTPUT 2	Channel 2 OUT
5	NO CONN	Not Connected

Current Sensor Dimensions (in mm)

CH1B022M

Remark

 V_{out} > V_o , when I_p flows in the positive direction (see current direction arrow on drawing).

Mating Connector

TE 4-Way – Generation Y

Housing with CPA: 2035360-2

Terminal: 1924955-1

Pinout

Pin No.	Signal	Description
1	VCC	+5V Power supply
2	OUTPUT 1	Channel 1 OUT
3	OUTPUT 2	Channel 2 OUT
4	GND	Ground

Absolute Maximum Ratings (non-operating)

Parameter	Symbol	Min	Тур.	Max	Units	Comments
Maximum Supply Voltage	U_{CMAX}	-0.3		10	V	
Maximum Output Current	I_{CMAX}	-10		10	mA	
Ambient Storage Temperature	T_{ST}	-40		+125	°C	
Insulation Resistance	R_{INS}	500			ΜΩ	500V DC, 60s
Dielectric voltage	I_{LEAK}			1	mA	2.5 kV AC, 50Hz, 1min
Creepage distance	D_{CREE}		12.21		mm	
Clearance	D_{CLEA}		12		mm	
Comparative tracking index	CTI		0 PLC		-	UL746A

Mechanical Product Properties

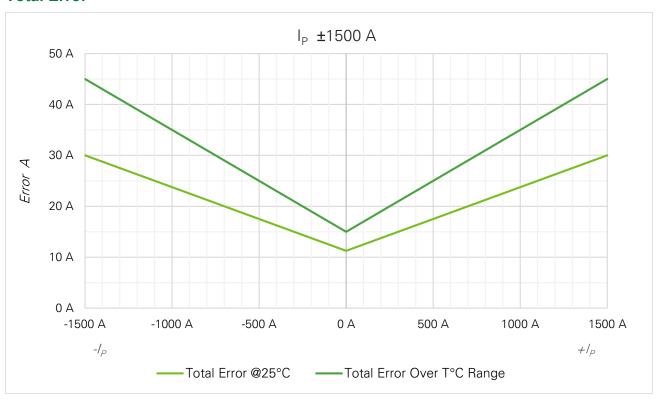
Parameter	Symbol	Level	Standard	Comments
Flammability Class		VO	UL94	
Protection Degree		IP 4X	IEC 60529	

Common Characteristics in Normal Range

Parameter	Symbol	Min	Тур.	Max	Units	Comments
Supply Voltage	U_C	4.75	5	5.25	V	
Current Consumption	I_C		11	15	mA	Single channel only
Current Consumption	$I_{\mathcal{C}}$		22	30	mA	w/ Dual or Redundant channel
Operating Ambient Temperature	T_A	-40		+1251	°C	
Output Voltage	V_{out}	$V_{out} = (U_0)$	$(V_0 - 1) \times (V_0 - 1)$	$+I_p \times S_{th}$	V	
Output Offset Voltage	V_o		2.5		V	U_C = 5V, I_p = 0 A
Clamping Voltage Lower	V_{CL}		0.3		V	U_C = 5V, T_A = 25 °C
Clamping Voltage Upper	V_{CU}		4.7		V	U_C = 5V, T_A = 25 °C
Power-on Time	t_{po}			1	ms	
Response Time	t_r		2	6	us	
Frequency Bandwidth	BW	40			KHz	@-3dB
Phase Shift	$\Delta arphi$		-4		0	@DC to 1KHz
Supply Capacitance	C_{SUP}	47	100		nF	Capacitors need to be located near supply pin
Load Capacitance	C_L		2.2		nF	
Load Resistance	R_L		25		kΩ	
Linearity Error	\mathcal{E}_L		±0.8		%FS	$U_C = 5V$, over temp
Offset Error	\mathcal{E}_{o}		±15		mV	$U_C = 5 \text{V}, T_A = 25 ^{\circ}\text{C}, I_A = 0 \text{A}$
Sensitivity Error	$\mathcal{E}_{\scriptscriptstyle S}$		±1		%	$U_C = 5V$, over temp

¹ Practical operating ambient temperature depending on RMS current profile. Maximum permissible busbar surface temperature: ≤ 150°C.

 $\begin{tabular}{ll} @2025 Littlelfuse Inc. \\ Specifications are subject to change without notice. \\ Revised: Rev. 0.3 & 3/13/25 \end{tabular}$

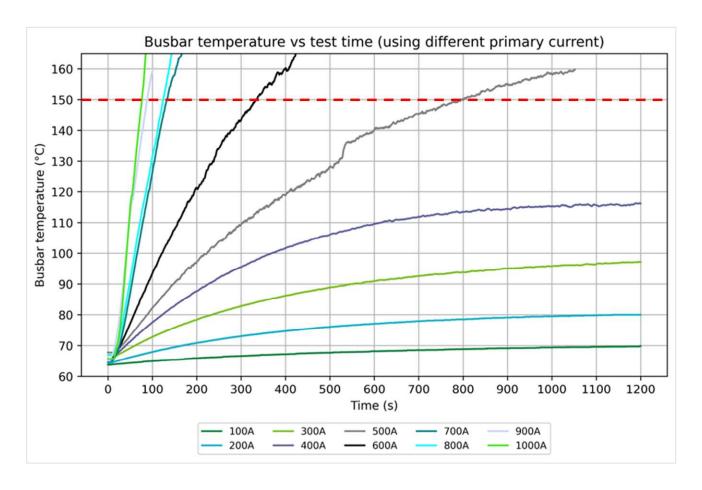

CH1B02xM

Littelfuse offers customized calibrations.

Performance data below is applicable for a ±1500A calibration.

Parameter	Symbol	Min	Тур.	Max	Units	Comments
Primary Current	I_p	-1500		+1500	А	
Sensitivity	S_{th}		1.33		mV/A	$U_C = 5 \text{ V}$

Total Error



Primary Current $\pm I_P$	Sensitivity	Total Erro	or @2 5°C	Total Erro	r @Trange
А	mV/A	%	Α	%	Α
+1500 A	1.33	±2.00 %	±30.00 A	±3.0 %	±45.0 A
0	1.33	±0.75 %	±11.25 A	±1.0 %	±15.0 A
-1500 A	1.33	±2.00 %	±30.00 A	±3.0 %	±45.0 A

Error in current (A) = Total Error $\% * I_p$

Continuous Current Performance (Busbar Heat Rise)

Test Conditions:

Ambient temperature: 65 °C, without cooling

Temperature monitoring: Record 1 data point per second. Test stopped when Temperature is stabilized at 150°C.

Recommendations for Use

Setup Recommendation

Mounting and spacing recommendations are common for all component family members listed in this datasheet. Example shown is CH1B022M.

Busbar Mounting:

- Mount with ISO M6 serrated flange screw or bolt, or with M6 fastener scew or bolt combined with lock washer.
- Assembly torque: 7N·m ± 10%
- It is recommended to pre-tighten mounting fasteners both sides of the integral busbar prior to applying final assembly torque.
- Recommended mating busbar cross section:
 5x20mm

Adjacent Busbar Spacing:

- The distance between sensor busbar and adjacent busbar is recommended to be more than:
 - 20 mm @ 1500 A
 - 10 mm @ 1000 A
- Adjacent busbar should not pass directly above or below current sensor housing.
- Busbar layout should be reviewed with Littelfuse for compatibility.

Handling

- Handling of sensors should be minimized by maintaining parts within packaging until point of assembly.
- Contact with sensor terminals should be avoided.
- To avoid potential damage, adherence to ESD handling best practices is recommended.
- Dropped parts should be scrapped regardless of evidence of external damage.

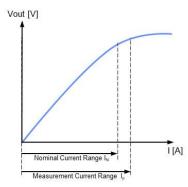
Validation Test Specification

Low Temperature Operation ISO 16750-4 High Temperature Operating Endurance (HTOE) ISO 16750-4 IEC 60068-2-78 Powered Thermal Cycle Endurance ISO 16750-4 ISO 16750-3 I	Group / Test	Reference	Test Condition
and Voc) at 1s intervals, zero primary current ISO 16750-4 ISO 16750-3 ISO 16750	Environmental		
Vecd, at 30ms intervals @ 125 °C, zero primary current 20°C > Timin > Timax > 20°C. Temperature step: 5 °C. Dwell time: TBD. Check DUT functionality at Umin, Unow at each temperature step.	Low Temperature Operation	ISO 16750-4	24h; @-40 °C, power supply(continuous monitoring: offset (Vout and Vcc) at 1s intervals, zero primary current
Internation International Properature Items: TBD. Check DUT functionality at Umin, Unom, Umax at each temperature step.	High Temperature Operating Endurance (HTOE)	ISO 16750-4	Vcc), at 30ms intervals @ 125 °C, zero primary current
IEC 60068-2-78 Vcc) at 30ms intervals, zero primary current. Intermediate functional test at room temp at 500hrs.	Temperature Step Test		time: TBD. Check DUT functionality at Umin, Unom, Umax at each temperature step.
Powered Thermal Cycle Endurance SO 16750-4 § 5.3.2 EN 60068-2-14, test Nb	High Temperature / High Humidity Endurance (HTHE)	IEC 60068-2-78	Vcc) at 30ms intervals, zero primary current.
Thermal Shock SO 16750-4 \$ 1.5.2.4 EN 60068-2-14 SO 16750-4 \$ 1.5.2.4 Composite Temperature / Humidity Cyclic Cyclic Cyclic Cyclic Dewing Test SO 16750-4 \$ 1.5.2.4 So 16750-3 \$ 1.5.2.4 So 16750-3 \$ 1.5.2.4 So 16750-3 \$ 1.5.2.4 Test IV , passenger car, sprung masses So 16750-3 \$ 1.5.2.4 Test IV , passenger car, sprung masses So 16750-3 \$ 1.5.2.4 So	Powered Thermal Cycle Endurance		Vout and Vcc at 30ms intervals.
Dust IEC 60068-2-38 DUT monitoring at 30ms intervals. 5 cycles. Total duration 30 hours. Temperature: +80°C. DuT powered on, continuous monitoring of Vout and Vcc at 30ms intervals. 5 cycles. Total duration 30 hours. Temperature: +80°C. DuT powered on, continuous monitoring of Vout and Vcc at 30ms intervals. 1	Thermal Shock		
Deving Test SO 16750-4:2010 Section 5.6.2.4 Test 3 DUT powered on, continuous monitoring of Vout and Vcc at 30ms intervals.	Composite Temperature /Humidity Cyclic		
Dust IEC 60529 per IEC 60529 Mechanical Mechanical Mechanical Shock ISO 16750-3 §4.2.2.2 (500 m·s-2; 11 ms) 10 shocks per axe Half sinusoidal pulse. Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. ISO 16750-3 § 4.1.2.4 Test IV, passenger car, sprung masses Free Fall ISO 16750-3 § 4.3 (500 m·s-2; 11 ms) 10 shocks per axe Half sinusoidal pulse. Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. 22 hours for each axis. RMS acceleration value of 96,6 m/s2. Continuous monitoring: offset(Vout and Vcc) at 30ms intervals, zero primary current. Temperature cycling from Tmin to Tmax. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Temperature:+23 °C ± 5 °C. Electrical Noise Littelfuse VS Sweep from DC to 1MHZ. Power-on Time Littelfuse VS Vdd min to 90%Vout Overvoltage ISO 16750-2 §4.3 +6V for 60s VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 §4.7.2 -0.3V for 60s	Dewing Test		DUT powered on, continous monitoring of Vout and Vcc at
Mechanical Mechanical Shock ISO 16750-3 §4.2.2.2 Mechanical Shock ISO 16750-3 §4.2.2.2 ISO 16750-3 § 4.1.2.4 Test IV, passenger car, sprung masses Free Fall ISO 16750-3 § 4.3 ISO 16750-3 § 4.3 ISO 16750-3 § 4.1.2.4 Test IV, passenger car, sprung masses ISO 16750-3 § 4.3 ISO 16750-2 § 4.3 ISO 16750-2 § 4.7.2 Mochanical Shock ISO 16750-2 § 4.7.2	Ingress Protection		
Mechanical Shock ISO 16750-3 §4.2.2.2 (500 m·s-2; 11 ms) 10 shocks per axe Half sinusoidal pulse. Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. ISO 16750-3 § 4.1.2.4 Test IV, passenger car, sprung masses Free Fall ISO 16750-3 § 4.3 ISO 16750-2 § 4.3 ISO 16750-2 § 4.3 ISO 16750-2 § 4.10 ISO 16750-2 § 4.7.2	Dust	IEC 60529	per IEC 60529
Mechanical Shock ISO 16750-3 § 4.2.2.2 Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. ISO 16750-3 § 4.1.2.4 Test IV, passenger car, sprung masses Free Fall ISO 16750-3 § 4.3 ISO 16750-3 § 4.3 Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Temperature: +23 °C ± 5 °C. Electrical Noise Littelfuse VS Sweep from DC to 1MHZ. Vdd min to 90% Vout Overvoltage ISO 16750-2 § 4.3 USO 16750-2 § 4.10 ISO 16750-2 § 4.7.2 Oontinuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. 22 hours for each axis. RMS acceleration value of 96,6 m/s2. Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. 22 hours for each axis. RMS acceleration value of 96,6 m/s2. Continuous monitoring: offset(Vout and Vcc) at 1ms intervals, zero primary current. 22 hours for each axis. RMS acceleration value of 96,6 m/s2. Continuous monitoring: offset(Vout and Vcc) at 3ms intervals, zero primary current. Temperature cycling from Tmin to Tmax. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Temperature: +23 °C ± 5 °C. Electrical Noise Littelfuse VS Vdd min to 90% Vout Overvoltage ISO 16750-2 § 4.3 VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 § 4.7.2 Oontinuous monitoring: offset(Vout and Vcc) at 30ms intervals, zero primary current. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per e	Mechanical		
Vibration in Temperature Test IV, passenger car, sprung masses Free Fall ISO 16750-3 § 4.3 Electrical Noise Littelfuse VS Cuntinuous monitoring: offset(Vout and Vcc) at 30ms intervals, zero primary current. Temperature cycling from Tmin to Tmax. Test direction: ±X, ±Y, ±Z axis (6 directions), one sample per each axis; Drop floor: steel plate; Drop height: 1 meter. Temperature: +23 °C ± 5 °C. Electrical Noise Littelfuse VS Sweep from DC to 1MHZ. Vdd min to 90% Vout Overvoltage ISO 16750-2 § 4.3 VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 § 4.7.2 -0.3V for 60s	Mechanical Shock	ISO 16750-3 §4.2.2.2	Continuous monitoring: offset(Vout and Vcc) at 1ms intervals,
Free Fall ISO 16750-3 § 4.3 each axis; Drop floor: steel plate; Drop height: 1 meter. Temperature: +23 °C ± 5 °C. Electrical Noise Littelfuse VS Sweep from DC to 1MHZ. Vdd min to 90%Vout Overvoltage ISO 16750-2 §4.3 Output Short Circuit to Supply ISO 16750-2 §4.10 ISO 16750-2 §4.7.2 Output Short Circuit to Supply ISO 16750-2 §4.7.2 ISO 16750-2 §4.7.2 Output Short Circuit to Supply ISO 16750-2 §4.7.2	Vibration in Temperature	Test IV, passenger car,	Continuous monitoring: offset(Vout and Vcc) at 30ms intervals, zero primary current. Temperature cycling from Tmin to Tmax.
Noise Littelfuse VS Sweep from DC to 1MHZ. Vdd min to 90%Vout +6V for 60s VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage Littelfuse VS Vdd min to 90%Vout +6V for 60s 'VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. -0.3V for 60s	Free Fall	ISO 16750-3 § 4.3	each axis; Drop floor: steel plate; Drop height: 1 meter.
Power-on Time Littelfuse VS Vdd min to 90%Vout ISO 16750-2 §4.3 +6V for 60s VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 §4.7.2 Vdd min to 90%Vout +6V for 60s VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector.	Electrical		
Overvoltage ISO 16750-2 §4.3 +6V for 60s 'VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 §4.7.2 -0.3V for 60s	Noise	Littelfuse VS	Sweep from DC to 1MHZ.
Output Short Circuit to Supply ISO16750-2 §4.10 'VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 §4.7.2 -0.3V for 60s	Power-on Time	Littelfuse VS	Vdd min to 90%Vout
Output Short Circuit to Supply ISO16750-2 §4.10 of connector; Connect all terminal to B+ except for GND terminal of connector. Reverse Supply Voltage ISO 16750-2 §4.7.2 -0.3V for 60s	Overvoltage	ISO 16750-2 §4.3	+6V for 60s
	Output Short Circuit to Supply	ISO16750-2 §4.10	· ·
Response Time Littelfuse VS 90%Primary current to 90%Vout	Reverse Supply Voltage	ISO 16750-2 §4.7.2	-0.3V for 60s
	Response Time	Littelfuse VS	90%Primary current to 90%Vout

Continued next page

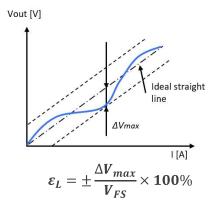
Validation Test Specification (continued)

Group / Test	Reference	Test Condition
Insulation and Dielectric Voltage		
Insulation Resistance	ISO 16750-2 §4.12.2	Perform insulation resistance test ,then perform a CL-THC-Temperature / Humidity cycle test, at last perform insulation resistance test again; record the min value, test point: connector wires to busbar, samples shall remain 0.5h at room temperature after Composite temperature/humidity cyclic test: 1000V DC, 60s
Dielectric Withstand Voltage	IEC 60664; Part 1	Perform dielectric withstand voltage test ,then perform a CL-THC-Temperature / Humidity cycle test, at last perform dielectric withstand voltage test again; record the max value ;samples shall remain 0.5h at room temperature after Composite temperature/humidity cyclic test, 'test point: connector wire to busbar: 2.5 kV AC, 50Hz, 1min.
EMC		
Bulk Current Injection (BCI)	ISO 11452-4 Annex E.1.1, Table E.1 GMW3097; From 1 to 400 MHz.	Refer to EMC Test Plan - EMC-8057
Radiated Electromagnetic Immunity (ALSE)	ISO 11452-2	Refer to EMC Test Plan - EMC-8057
Radiated Emissions	CISPRR25 (2008) Table 9	Refer to EMC Test Plan - EMC-8057
ESD Handling	ISO 10605 §7	Refer to EMC Test Plan - EMC-8057
Connector		
Terminal Push-out Force	GMW3191:2012 §4.5.2	Apply rearward pulling force to dislodge the terminal out of the header. Speed 50± 10mm/min. Record the peak force required to displace the terminal 0.20 mm. Afterwards, connectors conditioned by being exposed to 95% to 98% RH at +40 °C for 6 hours. Push / pull tests shall be performed immediately following removal of the headers from the temperature/humidity chamber. Terminal width 0.5 mm and 0.5 mm (< 0.8 mm)
Connector to Connector Engagement Force	GMW3191:2012 §4.2.8/ USCAR25	Insert TPA into connector body at a uniform rate of (50 ± 10) mm/minute. Record peak force and graph force versus distance from initial position of TPA to connector body to final engaged position.
Locked Connector Disengagement Force	GMW3191:2012 §4.2.18	Pull the mated connectors apart at a rate of (50 \pm 10) mm/minute. Record the force at which the connectors disengage.
Unlocked Connector Disengagement Force	GMW3191:2012 §4.2.19	Pull the mated connectors apart at a rate of (50 ± 10) mm/minute. Record the force at which the connectors disengage.
Other		
Phase Shift Test	Littelfuse VS	



Performance Parameter Definitions

Output Voltage (V_{OUT})


$$V_{out} = (V_{CC}/5) \times (2.5 + I_p \times S)$$

Primary current definition (I_N, I_p)

Linearity error (ε_L)

The maximum positive or negative discrepancy with a reference straight line $V_{out} = f(I_n)$.

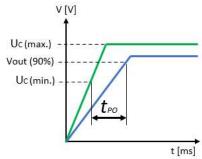
V_{FS}: full scope output voltage

Offset error (ε_0)

The voltage drift of the measured sensor output V_{out} at 0A compared to the ideal value 2.5V (@ $V_c = 5$ V) is called the total offset voltage error. This offset error can be attributed to the electrical offset, magnetic offset and related drift over temperature.

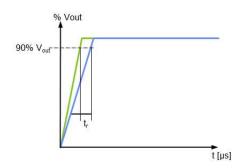
$$arepsilon_{o} = \pm rac{V_{out} - V_{o}}{V_{FS}} imes 100\%$$

Sensitivity error (ε_s)


The sensor sensitivity error is the drift of sensor's ideal sensitivity.

$$arepsilon_S = \pm rac{S - S_{th}}{S_{th}} imes 100\%$$

Sth: theory sensitivity


Power-on time (t_{po})

The Power-on time is the duration from Uc (min.) to 90% of Vout.

Response time (t_r)

The time between the primary current signal and the output signal reaching at 90% of its final value.

Typical, minimum and maximum values

Typical, minimum, and maximum values are determined during initial product characterization. Typical values representing the normal of statistical $\pm 1\sigma$ interval (68.27% probability). Minimum and maximum values representing the Gaussian distribution boundaries of the $\pm 3\sigma$ interval (99.73% probability).

Contact

Custom electrical and environmental specifications can be designed to meet any need, please contact Littelfuse Engineering for details.

Website: www.littelfuse.com

Sales Support: <u>ALL Autosensors Sales@littelfuse.com</u>
Technical Support: <u>ALL Autosensors Tech@littelfuse.com</u>

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at https://www.littlefuse.com/legal/disclaimers/product-disclaimers.

Information provided by Littelfuse is believed to be accurate and reliable.

All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Littlefuse products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive applications) not expressly set forth in applicable Littlefuse product documentation. Warranties granted by Littlefuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littlefuse product documentation. Littlefuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littlefuse as set forth in applicable Littlefuse product documentation.

Document version: Rev. 0.3 Date of print: 13MAR2025

