

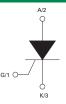
S6X8ECS2

Main Features

Symbol	Value	Unit
I _{T(RMS)}	0.8	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	30	μА

Applications

The S6X8ECS2 is specifically designed for GFCI (Ground Fault Circuit Interrupter) and gas ignition applications.


Description

This new .8 A sensitive gate SCR in an TO-92 package with a GAK pin out, offers a high static component series with a high static dv/dt and a low turn off (tq) time by the use of small die planar construction implementation. All SCR's junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- Surge capability >10Amps
- High dv/dt noise immunity
- Improved turn-off time (t_q)
 ≤ 25 µsec.
- TO-92 G-A-K pinout
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current (full sine wave)	T _c =	T _c = 55°C		А
I _{T(AV)}	Average on-state current	T _C =	55°C	0.51	А
1	Non repetitive surge peak on-state current (Single cycle, T_J initial = 25°C)		F = 50 Hz	8	А
TSM			F = 60 Hz	10	A
l²t	124 \ / -		F = 50 Hz	0.32	A ² s
1-1	l²t Value for fusing	$t_p = 8.3 \text{ ms}$	F = 60 Hz	0.41	A-5
di/dt	Critical rate of rise of on-state current $I_g = 10 \text{mA}$ $T_J = 125 ^{\circ}\text{C}$			50	A/µs
I _{GM}	Peak gate current $t_{_{ m D}}=10~\mu{ m s}$		T _J = 125°C	1.0	А
P _{G(AV)}	Average gate power dissipation $T_J = 125$ °C			0.1	W
T _{stg}	Storage junction temperature range			-40 to 150	°C
Т,	Operating junction temperature range			-40 to 125	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Value		Unit
Symbol	Description		Min	Max	Onit
I _{GT}	DC Gate Trigger Current	V _D = 6V	1	30	μΑ
V _{GT}	De date ingger current	$R_L = 100 \Omega$	_	0.8	V
V _{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10\mu A$	5	_	V
I _H	Holding Current	$R_{GK} = 1 \text{ k}\Omega$ Initial Current = 20mA	_	3	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125$ °C, $V_D = V_{DRM} / V_{RRM}$ Exponential Waveform, $R_{GK} = 1 \text{ k}\Omega$	75	_	V/µs
V_{GT}	Gate Non-Trigger Voltage	$V_{D} = V_{DRM}, R_{GK} = 1 \text{ k}\Omega$ $T_{J} = 25^{\circ}\text{C}$	0.2	_	V
t _q	Turn-Off Time	$T_J = 125^{\circ}\text{C } @ 600 \text{ V}$ $R_{GK} = 1 \text{ k}\Omega$	_	25	μs
t _{gt}	Turn-On Time	$I_{G} = 10 \text{mA PW} = 15 \mu \text{sec}$ $I_{T} = 1.6 \text{A (pk)}$	2.0	(Тур)	μs

Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Value	Unit	
Syllibol	Description	rest Conditions	Max	Onit	
V _{TM}	Peak On-State Voltage	I _{TM} = 1.2 A (pk)	1.4	V	
	Off Chata Command Bank Bank thing	$T_J = 25^{\circ}C @ V_D = V_{DRM'} R_{GK} = 1 k\Omega$	3	μА	
DRM	Off-State Current, Peak Repetitive	$T_J = 125$ °C @ $V_D = V_{DRM'}$ $R_{GK} = 1 \text{ k}\Omega$	500	μΑ	

Thermal Resistances

Symbol	Parameter		Value	Unit
$R_{\theta(JC)}$	Junction to case (AC)	$I_T = 0.8 \text{ A}_{(RMS)}$, 60Hz AC resistive load condition, 100% conduction.	75	°C/W
R _{θ(J-A)}	Junction to ambient	condition, 100% conduction.	150	°C/W

Figure 1: Normalized DC Gate Trigger Current For All Quadrants vs. Junction Temperature

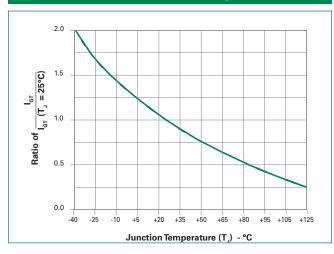


Figure 2: Normalized DC Holding Current vs. Junction Temperature

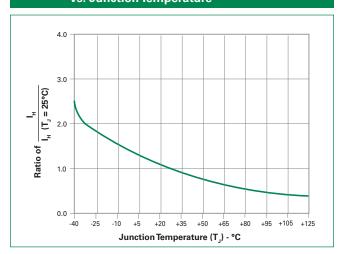


Figure 3: DC Gate Trigger Voltage vs. Junction **Temperature**

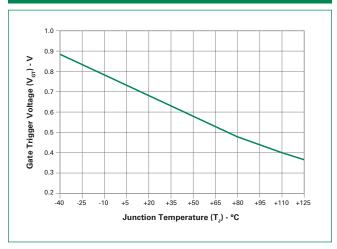


Figure 4: On-State Current vs. On-State Voltage (Typical)

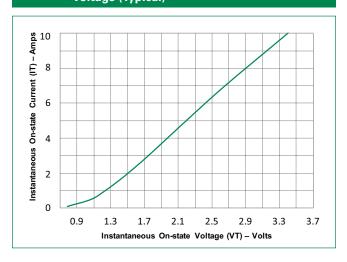


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

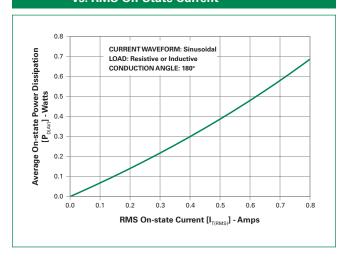


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

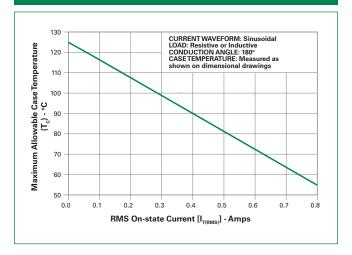
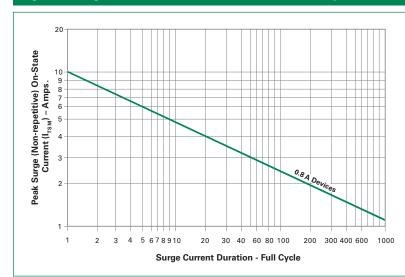



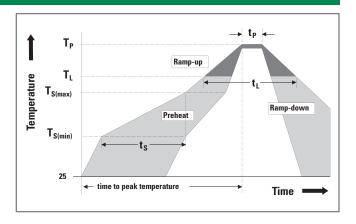
Figure 7: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

Load: Resistive

RMS On-State Current $[I_{T(RMS)}]$: Max Rated Value at Specific Case Temperature

Notes:


1. Gate control may be lost during and immediately following surge current interval.

2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

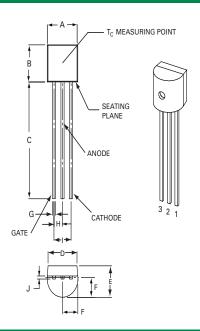
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T ₁) to peak		5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemperature (T _p)		260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exceed		280°C	

Physical Specifications

Terminal Finish 100% Matte Tin-plated.		
Body Material	UL Recognized compound meeting flammability rating V-0.	
Lead Material	Copper Alloy	

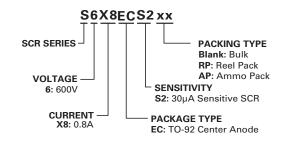
Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

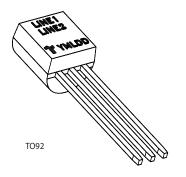
Reliability/Environmental Tests

Test	Specifications and Conditions		
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours		
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time		
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity		
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C		
Low-Temp Storage	1008 hours; -40°C		
Resistance to Solder Heat	MIL-STD-750 Method 2031		
Solderability	ANSI/J-STD-002, category 3, Test A		
Lead Bend	MIL-STD-750, M-2036 Cond E		

Dimensions

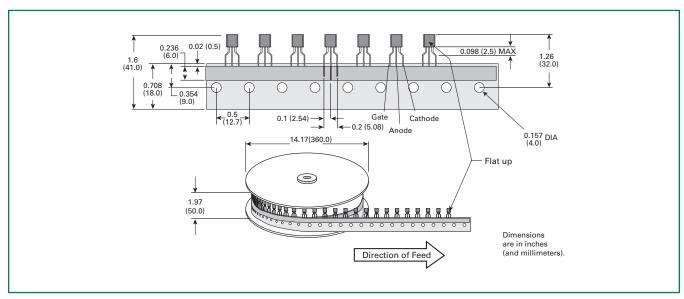


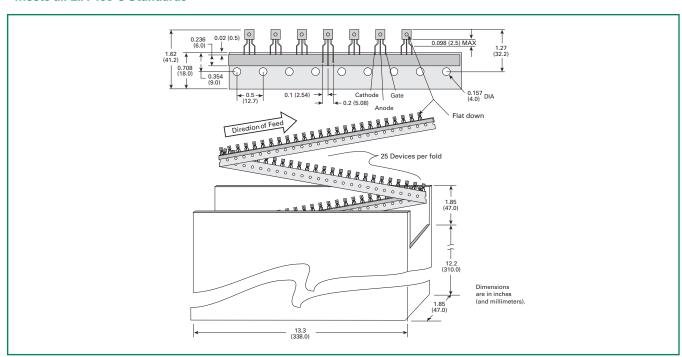
Dimensions	Inches		Millimeters	
Dimensions	Min	Max	Min	Max
А	0.175	0.205	4.450	5.200
В	0.170	0.210	4.320	5.330
С	0.500	_	12.700	_
D	0.135	_	3.430	_
Е	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
Н	0.045	0.055	1.150	1.390
I	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S6X8ECS2	S6X8ECS2	0.217 g	Bulk	2500
S6X8ECS2AP	S6X8ECS2	0.217 g	Ammo Pack	2000
S6X8ECS2RP	S6X8ECS2	0.217 g	Tape & Reel	2000

Part Numbering System


Part Marking System


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

