Sxx35x Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls. Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits

- RoHS compliant
- Glass – passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 500 A

Applications

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances. Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Main Features

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT(RMS)</td>
<td>35 A</td>
<td></td>
</tr>
<tr>
<td>V(DRM)/V(RRM)</td>
<td>400 to 1000 V</td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>40 mA</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT(RMS)</td>
<td>RMS on-state current</td>
<td>T C = 95°C</td>
<td>35 A</td>
<td></td>
</tr>
<tr>
<td>IT(AV)</td>
<td>Average on-state current</td>
<td>T C = 95°C</td>
<td>22.0 A</td>
<td></td>
</tr>
<tr>
<td>IT(SM)</td>
<td>Peak non-repetitive surge current</td>
<td>single half cycle; f = 50Hz; T J (initial) = 25°C</td>
<td>425 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>single half cycle; f = 60Hz; T J (initial) = 25°C</td>
<td>500 A</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Pt Value for fusing</td>
<td>T p = 8.3 ms</td>
<td>1035 A²/s</td>
<td></td>
</tr>
<tr>
<td>di/dt</td>
<td>Critical rate of rise of on-state current</td>
<td>f = 60Hz ; T J = 125°C</td>
<td>150 A/µs</td>
<td></td>
</tr>
<tr>
<td>I(G)</td>
<td>Peak gate current</td>
<td>T J = 125°C</td>
<td>3.5 A</td>
<td></td>
</tr>
<tr>
<td>P(AV)</td>
<td>Average gate power dissipation</td>
<td>T J = 125°C</td>
<td>0.8 W</td>
<td></td>
</tr>
<tr>
<td>T Stg</td>
<td>Storage temperature range</td>
<td></td>
<td>-40 to 150 °C</td>
<td></td>
</tr>
<tr>
<td>T J</td>
<td>Operating junction temperature range</td>
<td></td>
<td>-40 to 125 °C</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_J = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{GT}</td>
<td>V_D = 12V; R_L = 30Ω</td>
<td>MAX. 40</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN. 5</td>
<td>mA</td>
</tr>
<tr>
<td>V_{GT}</td>
<td></td>
<td>MAX. 1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_D = V_{DRM}; gate open; T_J = 100°C</td>
<td>400V</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600V</td>
<td>425</td>
</tr>
<tr>
<td>dv/dt</td>
<td></td>
<td>800V</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000V</td>
<td>200</td>
</tr>
<tr>
<td>V_{GD}</td>
<td>V_D = V_{DRM}; R_L = 3.3 kΩ; T_J = 125°C</td>
<td>MIN. 0.2</td>
<td>V</td>
</tr>
<tr>
<td>I_{G}</td>
<td>I_{i} = 400mA (initial)</td>
<td>MAX. 50</td>
<td>mA</td>
</tr>
<tr>
<td>t_{E}</td>
<td>(1)</td>
<td>MAX. 35</td>
<td>μs</td>
</tr>
<tr>
<td>t_{sp}</td>
<td>I_{j} = 2 x I_{GT}; PW = 15μs; I_{j} = 70A</td>
<td>TYP. 2</td>
<td>μs</td>
</tr>
</tbody>
</table>

Notes:
(1) I_{j}=2A; t_p=50μs; dv/dt=5V/μs; di/dt=-30A/μs

Static Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TM}</td>
<td>I_{j} = 70A; t_p = 380μs</td>
<td>MAX. 1.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{DRM} / V_{RRM}</td>
<td>T_J = 25°C</td>
<td>400 – 600V</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>800 – 1000V</td>
<td>20</td>
<td>μA</td>
</tr>
<tr>
<td>I_{DRM} / I_{RRM}</td>
<td>T_J = 100°C</td>
<td>400 – 600V</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>800V</td>
<td>1500</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>1000V</td>
<td>3000</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>T_J = 125°C</td>
<td>400 – 600V</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>800V</td>
<td>3000</td>
<td>μA</td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{J-CL}</td>
<td>Junction to case (AC)</td>
<td>0.7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Teccor® brand Thyristors
35 Amp Standard SCRs

Specifications are subject to change without notice.
Please refer to http://www.littelfuse.com for current information.
Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

![Graph showing Maximum Allowable Case Temperature vs. Average On-State Current.](image)

Figure 8: Peak Capacitor Discharge Current

![Graph showing Peak Capacitor Discharge Current.](image)

Figure 9: Peak Capacitor Discharge Current Derating

![Graph showing Peak Capacitor Discharge Current Derating.](image)

Figure 10: Surge Peak On-State Current vs. Number of Cycles

![Graph showing Surge Peak On-State Current vs. Number of Cycles.](image)

Notes:
1. Gate control may be lost during and immediately following surge current interval.
2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

SUPPLY FREQUENCY: 60 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: $[I_{TM}]$: Maximum Rated Value at Specified Case Temperature
Soldering Parameters

<table>
<thead>
<tr>
<th>Reflow Condition</th>
<th>Pb – Free assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Heat</td>
<td></td>
</tr>
<tr>
<td>- Temperature Min ($T_{s(min)}$)</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Max ($T_{s(max)}$)</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (min to max) (t_s)</td>
<td>60 – 180 secs</td>
</tr>
<tr>
<td>Average ramp up rate (Liquidus Temp) (T_{s}) to peak</td>
<td>5°C/second max</td>
</tr>
<tr>
<td>$T_{s(max)}$ to T_L - Ramp-up Rate</td>
<td>5°C/second max</td>
</tr>
<tr>
<td>Reflow</td>
<td></td>
</tr>
<tr>
<td>- Temperature (T_L) (Liquidus)</td>
<td>217°C</td>
</tr>
<tr>
<td>- Temperature (t_L)</td>
<td>60 – 150 seconds</td>
</tr>
<tr>
<td>Peak Temperature (T_L)</td>
<td>260±5°C</td>
</tr>
<tr>
<td>Time within 5°C of actual peak Temperature (t_p)</td>
<td>20 – 40 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate</td>
<td>5°C/second max</td>
</tr>
<tr>
<td>Time 25°C to peak Temperature (T_p)</td>
<td>8 minutes Max.</td>
</tr>
<tr>
<td>Do not exceed</td>
<td>280°C</td>
</tr>
</tbody>
</table>

Environmental Specifications

<table>
<thead>
<tr>
<th>Test</th>
<th>Specifications and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Blocking</td>
<td>MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time</td>
</tr>
<tr>
<td>Temperature/Humidity</td>
<td>EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity</td>
</tr>
<tr>
<td>High Temp Storage</td>
<td>MIL-STD-750, M-1031, 1008 hours; 150°C</td>
</tr>
<tr>
<td>Low-Temp Storage</td>
<td>1008 hours; -40°C</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature</td>
</tr>
<tr>
<td>Autoclave</td>
<td>EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H</td>
</tr>
<tr>
<td>Resistance to Solder Heat</td>
<td>MIL-STD-750 Method 2031</td>
</tr>
<tr>
<td>Solderability</td>
<td>ANSI/J-STD-002, category 3, Test A</td>
</tr>
<tr>
<td>Lead Bend</td>
<td>MIL-STD-750, M-2036 Cond E</td>
</tr>
</tbody>
</table>

Physical Specifications

<table>
<thead>
<tr>
<th>Terminals Finish</th>
<th>100% Matte Tin-plated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Material</td>
<td>UL recognized epoxy meeting flammability classification 94V-0</td>
</tr>
<tr>
<td>Lead Material</td>
<td>Copper Alloy</td>
</tr>
</tbody>
</table>

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.
Dimensions – TO-218X (J Package) — Isolated Mounting Tab

![Diagram of TO-218X (J Package) — Isolated Mounting Tab](image)

Note: Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.810</td>
<td>20.57</td>
</tr>
<tr>
<td></td>
<td>0.835</td>
<td>21.21</td>
</tr>
<tr>
<td>B</td>
<td>0.610</td>
<td>15.49</td>
</tr>
<tr>
<td></td>
<td>0.630</td>
<td>16.00</td>
</tr>
<tr>
<td>C</td>
<td>0.178</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>0.188</td>
<td>4.78</td>
</tr>
<tr>
<td>D</td>
<td>0.055</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>0.070</td>
<td>1.78</td>
</tr>
<tr>
<td>E</td>
<td>0.487</td>
<td>12.37</td>
</tr>
<tr>
<td></td>
<td>0.497</td>
<td>12.62</td>
</tr>
<tr>
<td>F</td>
<td>0.635</td>
<td>16.13</td>
</tr>
<tr>
<td></td>
<td>0.655</td>
<td>16.64</td>
</tr>
<tr>
<td>G</td>
<td>0.022</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>0.74</td>
</tr>
<tr>
<td>H</td>
<td>0.075</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>2.41</td>
</tr>
<tr>
<td>J</td>
<td>0.575</td>
<td>14.61</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>15.88</td>
</tr>
<tr>
<td>K</td>
<td>0.256</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td>0.264</td>
<td>6.71</td>
</tr>
<tr>
<td>L</td>
<td>0.220</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>5.79</td>
</tr>
<tr>
<td>M</td>
<td>0.080</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>0.088</td>
<td>2.24</td>
</tr>
<tr>
<td>N</td>
<td>0.169</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>0.177</td>
<td>4.49</td>
</tr>
<tr>
<td>P</td>
<td>0.034</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>1.07</td>
</tr>
<tr>
<td>R</td>
<td>0.113</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>0.121</td>
<td>3.07</td>
</tr>
<tr>
<td>S</td>
<td>0.086</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>0.096</td>
<td>2.44</td>
</tr>
<tr>
<td>T</td>
<td>0.156</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>0.166</td>
<td>4.22</td>
</tr>
<tr>
<td>U</td>
<td>0.164</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>0.165</td>
<td>4.20</td>
</tr>
<tr>
<td>V</td>
<td>0.603</td>
<td>15.31</td>
</tr>
<tr>
<td></td>
<td>0.618</td>
<td>15.70</td>
</tr>
<tr>
<td>W</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>X</td>
<td>0.003</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.30</td>
</tr>
<tr>
<td>Y</td>
<td>0.028</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.81</td>
</tr>
<tr>
<td>Z</td>
<td>0.085</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Dimensions – TO-218AC (K Package) — Isolated Mounting Tab

![Diagram of TO-218AC (K Package) — Isolated Mounting Tab](image)

Note: Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.810</td>
<td>20.57</td>
</tr>
<tr>
<td></td>
<td>0.835</td>
<td>21.21</td>
</tr>
<tr>
<td>B</td>
<td>0.610</td>
<td>15.49</td>
</tr>
<tr>
<td></td>
<td>0.630</td>
<td>16.00</td>
</tr>
<tr>
<td>C</td>
<td>0.178</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>0.188</td>
<td>4.78</td>
</tr>
<tr>
<td>D</td>
<td>0.055</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>0.070</td>
<td>1.78</td>
</tr>
<tr>
<td>E</td>
<td>0.487</td>
<td>12.37</td>
</tr>
<tr>
<td></td>
<td>0.497</td>
<td>12.62</td>
</tr>
<tr>
<td>F</td>
<td>0.635</td>
<td>16.13</td>
</tr>
<tr>
<td></td>
<td>0.655</td>
<td>16.64</td>
</tr>
<tr>
<td>G</td>
<td>0.022</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>0.74</td>
</tr>
<tr>
<td>H</td>
<td>0.075</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>2.41</td>
</tr>
<tr>
<td>J</td>
<td>0.575</td>
<td>14.61</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>15.88</td>
</tr>
<tr>
<td>K</td>
<td>0.256</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td>0.264</td>
<td>6.71</td>
</tr>
<tr>
<td>L</td>
<td>0.220</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>5.79</td>
</tr>
<tr>
<td>M</td>
<td>0.080</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>0.088</td>
<td>2.24</td>
</tr>
<tr>
<td>N</td>
<td>0.169</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>0.177</td>
<td>4.49</td>
</tr>
<tr>
<td>P</td>
<td>0.034</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>1.07</td>
</tr>
<tr>
<td>R</td>
<td>0.113</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>0.121</td>
<td>3.07</td>
</tr>
<tr>
<td>S</td>
<td>0.086</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>0.096</td>
<td>2.44</td>
</tr>
<tr>
<td>T</td>
<td>0.156</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>0.166</td>
<td>4.22</td>
</tr>
<tr>
<td>U</td>
<td>0.164</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>0.165</td>
<td>4.20</td>
</tr>
<tr>
<td>V</td>
<td>0.603</td>
<td>15.31</td>
</tr>
<tr>
<td></td>
<td>0.618</td>
<td>15.70</td>
</tr>
<tr>
<td>W</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>X</td>
<td>0.003</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.30</td>
</tr>
<tr>
<td>Y</td>
<td>0.028</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.81</td>
</tr>
<tr>
<td>Z</td>
<td>0.085</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>2.42</td>
</tr>
</tbody>
</table>
Product Selector

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Voltage</th>
<th>Gate Sensitivity</th>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sxx35K</td>
<td>400V</td>
<td>X</td>
<td>40mA</td>
<td>Standard SCR</td>
</tr>
<tr>
<td>Sxx35K</td>
<td>600V</td>
<td>X</td>
<td>40mA</td>
<td>Standard SCR</td>
</tr>
<tr>
<td>Sxx35K</td>
<td>800V</td>
<td>X</td>
<td>40mA</td>
<td>Standard SCR</td>
</tr>
<tr>
<td>Sxx35K</td>
<td>1000V</td>
<td>X</td>
<td>40mA</td>
<td>Standard SCR</td>
</tr>
</tbody>
</table>

Note: xx = Voltage

Packing Options

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>Weight</th>
<th>Packing Mode</th>
<th>Base Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sxx35KTP</td>
<td>Sxx35K</td>
<td>4.40g</td>
<td>Tube</td>
<td>250 (25 per tube)</td>
</tr>
<tr>
<td>Sxx35JTP</td>
<td>Sxx35J</td>
<td>5.23g</td>
<td>Tube</td>
<td>250 (25 per tube)</td>
</tr>
</tbody>
</table>

Note: xx = Voltage

Part Numbering System

DEVICE TYPE
S: SCR

VOLTAGE RATING
40: 400V
60: 600V
80: 800V
K0: 1000V

CURRENT RATING
35: 35A

LEAD FORM DIMENSIONS
xx: Lead Form Option

SENSITIVITY & TYPE
S6 03 5
[blank]: 40mA

PACKAGE TYPE
K: TO-218AC (Isolated)
J: TO-218X (Isolated)

Part Marking System

TO-218 AC (K Package)
TO-218 X – (J Package)