IX9908
 Design Considerations

1 Introduction

This application note provides general guidelines for designing an off-line LED driver using IXYS Integrated Circuits Division's IX9908. The IX9908 can be configured to drive an external MOSFET device in a quasi-resonant flyback converter power stage that provides a constant current output to a LED string while maintaining a high power factor.

This driver features a high voltage start-up circuit that eliminates the need for a V_{CC} resistor, thereby improving overall power dissipation. In addition, there are multiple safety features such as under-voltage lockout, over-voltage protection, digital soft-start, foldback correction, and cycle-by-cycle peak current limiting. The IX9908 is an excellent choice for many phase-cut dimming and high power-factor correction LED lighting applications.

Figure 1 IX9908 Block Diagram

Figure 2 IX9908 Application Circuit

1.1 LED Driver Specifications

The following equations and component selections are based on the following LED driver specifications:

Parameter	Symbol	Rating	Units
AC Input Voltage Minimum Voltage Maximum Voltage	$V_{\text {AC_min }}$	90	$\mathrm{~V}_{\text {rms }}$
	$\mathrm{V}_{\text {AC_max }}$	135	
	$\mathrm{f}_{\text {AC }}$	60	Hz
Auxiliary Voltage	$\mathrm{V}_{\text {aux_max }}$	18	V
Auxiliary Current	$\mathrm{I}_{\text {aux_max }}$	30	mA
LED String Voltage	V $_{\text {LEDstring }}$	20	V
LED String Current	$\mathrm{I}_{\text {LED_max }}$	500	mA
Estimated Efficiency	η	85	$\%$
Oscillator Frequency	f_{S}	67	kHz
Power Factor	PF	98	$\%$
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$	50	$\%$

2 Component Selection

2.1 DC Bulk Voltage at Low and High Line
$V_{\text {DC_bulk_min }}=\sqrt{2} \bullet V_{\text {AC_min }}=\sqrt{2} \bullet 90 V_{\text {AC }} \approx 127.3 \mathrm{~V}$
$V_{\text {DC_bulk_max }}=\sqrt{2} \bullet V_{\text {AC_max }}=\sqrt{2} \bullet 135 V_{\text {AC }} \approx 191 \mathrm{~V}$

2.2 Output Power Calculation

$$
\begin{gathered}
P_{\text {out }}=V_{\text {LEDstring }} \bullet I_{\text {LED_max }} \\
P_{\text {out }}=20 \mathrm{~V} \bullet 500 \mathrm{~mA}=10 \mathrm{~W}
\end{gathered}
$$

2.3 Input Power Calculation

$$
\begin{gathered}
P_{\text {in }}=\frac{P_{\text {out }}}{\eta \bullet \mathrm{PF}} \\
P_{\text {in }}=\frac{10 \mathrm{~W}}{0.85 \bullet 0.98} \approx 12 \mathrm{~W}
\end{gathered}
$$

2.4 Primary Inductor Currents Calculation

$$
\begin{gathered}
I_{\text {pri_peak }}=\frac{\sqrt{2} \bullet V_{\mathrm{AC} \text { min }} \bullet D_{\text {max }}}{L_{\text {pri }} \bullet f_{\mathrm{S}}} \\
I_{\text {pri_peak }}=\frac{127.3 \mathrm{~V} \bullet 0.5}{1.82 \mathrm{mH} \bullet 67 \mathrm{kHz}} \approx 0.522 A_{\text {peak }}
\end{gathered}
$$

For $L_{\text {pri }}$, see 3.1 Primary Inductance Calculation.

$$
\begin{gathered}
I_{\mathrm{rms}}=I_{\text {pri peak }} \cdot \sqrt{\frac{D_{\max }}{3}} \\
I_{\mathrm{rms}}=0.522 A_{\text {peak }} \cdot \sqrt{\frac{0.5}{3}} \approx 0.213 A_{\mathrm{rms}}
\end{gathered}
$$

Note that duty cycle above 50% will result in converter stability issues such as sub-harmonic oscillations.

2.5 Reflected Flyback Voltage Calculation

$$
V_{\mathrm{ro}}=\frac{V_{\mathrm{LEDstring}}+V_{\mathrm{f}}}{\left(\frac{N_{\mathrm{S}}}{N_{\mathrm{P}}}\right)}=\frac{20 \mathrm{~V}+0.7 \mathrm{~V}}{0.1626} \approx 127 \mathrm{~V}
$$

See 3.2 Determine Transformer Turns Ratio for N_{S} / N_{P} ratio.

2.6 Input Capacitor, C_{IN}

The IX9908 is designed to operate without the need of a large bulk capacitor. This operating method enables the input current to form a triangular shape that closely
follows the rectified AC line voltage, enabling a very high power factor of up to 98% with low total harmonic distortion (THD).

A small, $0.1 \mu \mathrm{~F}, 400 \mathrm{~V}$ polyester film filter capacitor should be adequate for this application.

2.7 Input Rectifier Bridge

The breakdown voltage for this bridge is based on the maximum input voltage.

$$
V_{\text {bridge }}=\sqrt{2} \bullet 135 V_{\mathrm{AC}} \cdot 2 \approx 382 \mathrm{~V}
$$

Select the next higher standard voltage, 400 V .
The rectifier bridge is exposed to high surge currents, so select a bridge that can handle at least five times the $I_{\text {rms }}$ input current. In this case, a 1A bridge would be sufficient.

2.8 Calculate MOSFET Voltage Rating

$$
V_{\mathrm{DS}}=V_{\mathrm{DC} _ \text {bulk_max }}+V_{\mathrm{ro}}+V_{\text {spike }}
$$

Assume that $\mathrm{V}_{\text {spike }}=50 \mathrm{~V}$.

$$
V_{\mathrm{DS}}=191 V+127 V+50 V \approx 368 \mathrm{~V}
$$

Due to the voltage spikes resulting from leakage inductance, the MOSFET should be selected with an adequate margin. A good choice would be between 500 V and 600 V .

2.9 Design RCD Snubber

In a flyback topology, a snubber circuit is required to clamp the voltage caused by the leakage inductance, which is present in all transformers. Leakage inductance is highly dependent on the transformer construction, so care should be taken to keep it less than 2% of primary inductance. When no leakage inductance is known, a leakage inductance value of $37 \mu \mathrm{H}(2 \%$ of 1.82 mH$)$ can be used as a starting point to calculate the snubber's resistor, capacitor, and diode values.
$\mathrm{D}_{\text {SN }}$ is selected as 1 N 4007 GP ($1000 \mathrm{~V}, 1 \mathrm{~A}$ axial lead).
Energy stored in the leakage inductance L_{e} :

$$
W 1=0.5 L_{\mathrm{e}} \bullet I_{\mathrm{rms}}^{2}=0.5 \bullet 37 \mu H \bullet 0.213^{2} \approx 0.84 \mu \mathrm{~J}
$$

Average power transferred from W1 to the snubber:

$$
\begin{gathered}
P 1=W 1 \bullet f_{\mathrm{S}}=0.84 \mu \mathrm{~J} \bullet 67 \mathrm{kHz} \approx 56 \mathrm{~mW} \\
V_{\max }=V_{\mathrm{DC} _ \text {bulk_max }}+V_{\text {ro }}+V_{\text {spike }} \\
V_{\max }=191 \mathrm{~V}+127 \mathrm{~V}+50 \mathrm{~V}=368 \mathrm{~V} \\
\text { - } \mathrm{V}_{\text {spike }}=50 \mathrm{~V} \\
\text { - } \mathrm{V}_{\mathrm{ro}}=127 \mathrm{~V}
\end{gathered}
$$

Limiting the voltage to 368 V .

$$
\begin{gathered}
V_{\mathrm{SN}}=368 \mathrm{~V}-127 \mathrm{~V}=241 \mathrm{~V} \\
R_{\mathrm{SN}}=\frac{V_{\mathrm{SN}}^{2}}{P 1}=\frac{241 V^{2}}{0.056 \mathrm{~W}} \approx 1 \mathrm{M} \mathrm{\Omega} \\
C_{\mathrm{SN}}=\frac{T_{\mathrm{S}}}{R_{\mathrm{SN}}}=\frac{15 \mu \mathrm{~s}}{1 M \Omega}=0.015 \mathrm{nF} \\
C_{\mathrm{SN}} » \frac{T_{\mathrm{S}}}{R_{\mathrm{SN}}}=\frac{1}{f_{\mathrm{S}} \bullet R_{\mathrm{SN}}}=\frac{1}{67 \mathrm{kHz} \bullet 1 \mathrm{M} \Omega} \approx 15 \mathrm{pF}
\end{gathered}
$$

For margin, $\mathrm{C}_{\mathrm{SN}}=1 \mathrm{nF}$ is selected. This value is a starting point, and might have to be adjusted to get the desired voltage spike suppression.

2.10 Over-VoItage Protection \& Zero-Crossing Detection

The application schematic in Figure 2 IX9908 Application Circuit shows that the voltage from the auxiliary winding is connected to the zero crossing pin (ZCV), via RC network resistor $\mathrm{R}_{\mathrm{ZCV} 1}, \mathrm{R}_{\mathrm{ZCV} 2}$ and C_{zc}. The circuit provides a delay so that switch-on can occur at the voltage valley, thus enhancing efficiency. The line voltage is sensed indirectly through the current in $\mathrm{R}_{\mathrm{ZCV} 1}$.

The current equation is given by:

$$
I_{\mathrm{ZCV}}=\frac{V_{\mathrm{DC} \text { bulk } \min } \bullet N_{\mathrm{A}}}{R_{\mathrm{ZCV} 1} \bullet N_{\mathrm{P}}}
$$

Solving for $\mathrm{R}_{\mathrm{ZCV}_{1}}$:

$$
R_{\mathrm{ZCV} 1}=\frac{V_{\mathrm{DC} \text { bulk } \text { min }}}{I_{\mathrm{ZCV}}} \bullet \frac{N_{\mathrm{A}}}{N_{\mathrm{P}}}
$$

From the V_{CS} vs. $\mathrm{I}_{\mathrm{ZCV}}$ graph below we select $\mathrm{I}_{\mathrm{ZCV}}=1000 \mu \mathrm{~A}$ as the recommended current. For N_{A} / N_{P} value, see 3.2 Determine Transformer Turns Ratio.

$$
R_{\mathrm{ZCV} 1}=\frac{127.3 \mathrm{~V}}{0.001 \mathrm{~A}} \cdot 0.1468 \approx 18.7 \mathrm{k} \Omega
$$

Figure $3 \quad \mathrm{~V}_{\mathrm{CS}}$ vs. $\mathrm{I}_{\mathrm{zcv}}$

The over voltage detection can be programmed by $\mathrm{R}_{\mathrm{ZCV} 2}$ resistor. The output, $\mathrm{V}_{\text {LEDstring }}$, is 20 V , so select an over voltage protection of 35 V , and from the datasheet, $\mathrm{V}_{\mathrm{ZCVOVP}}=3.7 \mathrm{~V}$

$$
\begin{gathered}
R_{\mathrm{ZCV} 2}=\frac{R_{\mathrm{ZCV} 1} \bullet V_{\mathrm{ZCVOVP}}}{V_{\text {oovpth }}-V_{\mathrm{ZCVOVP}}} \\
R_{\mathrm{ZCV} 2}=\frac{18.7 \mathrm{k} \Omega \cdot 3.7 \mathrm{~V}}{35 \mathrm{~V}-3.7 \mathrm{~V}} \approx 2.210 \mathrm{k} \Omega
\end{gathered}
$$

The delay capacitor can be approximated:

$$
\begin{gathered}
C_{\mathrm{ZCV}}=t_{\mathrm{RC}} \cdot \frac{R_{\mathrm{ZCV} 1}+R_{\mathrm{ZCV} 2}}{R_{\mathrm{ZC} 1} \cdot R_{\mathrm{ZC} 2}} \\
C_{\mathrm{ZCV}}=1 \mu \mathrm{~s} \bullet\left(\frac{18.7 \mathrm{k} \Omega+2.210 \mathrm{k} \Omega}{18.7 \mathrm{k} \Omega \cdot 2.210 \mathrm{k} \Omega}\right) \approx 519 p F
\end{gathered}
$$

Where $t_{R C}=1 \mu \mathrm{~s}$ (see IX9908 data sheet).

2.11 Primary Peak Current Control

The value of the current sense resistor (R_{CS}) can be selected by using following equation:

$$
\begin{gathered}
R_{\mathrm{CS}}=\frac{V_{\text {CSmax }}}{I_{\text {pri } 1 \text { peak }}} \\
R_{\mathrm{CS}}=\frac{0.75 \mathrm{~V}}{0.522 A_{\text {peak }}} \approx 1.44 \Omega
\end{gathered}
$$

The $\mathrm{R}_{\mathrm{IN} 1}$ and $\mathrm{R}_{\mathrm{IN} 2}$ resistor values can be selected to scale the input voltage at the V_{R} pin. The $\mathrm{R}_{\mathrm{IN} 1}$ resistor is selected with consideration of losses and high power factor correction. In this example we select $\mathrm{R}_{\mathrm{IN} 1}=1046 \mathrm{k} \Omega$. Select two $523 \mathrm{k} \Omega$ standard value resistors in the 0805 package.

The $\mathrm{R}_{\mathrm{IN} 2}$ value can be calculated:

$$
R_{\mathrm{IN} 2}=\frac{R_{\mathrm{IN} 1} \bullet R_{\mathrm{CS}} \bullet G_{\mathrm{PWM}} \bullet I_{\text {pri peak }}}{V_{\mathrm{DC} _ \text {bulk_min }}-\left(G_{\mathrm{PWM}} \bullet I_{\text {pri_peak }} \bullet R_{\mathrm{CS}}\right)}
$$

$R_{\text {IN } 2}=18.8 \mathrm{k} \Omega$. Select a standard value resistor, $18.7 \mathrm{k} \Omega$, where:

PWM-Op gain, $G_{\text {PWM }}=3$ (from the IX9908 data sheet).
Select the C_{VR} capacitor to be 2.2 nF and the D_{VR} diode can be BAS16, 100V, or equivalent.

2.12 Selection of V_{cc} Capacitor and Auxiliary Blocking Diode

In this application, a simple and inexpensive power supply for the IC is made from the auxiliary winding by using a blocking diode and a capacitor.

The auxiliary V_{CC} diode blocking voltage can be calculated:

$$
\begin{gathered}
V_{\mathrm{DVcc}}>\left(\sqrt{2} \bullet V_{\mathrm{AC} _\max } \bullet \frac{N_{\mathrm{A}}}{N_{\mathrm{P}}}\right)+V_{\text {aux } _\max } \\
V_{\mathrm{DVcc}}>(191 V \bullet 0.1468)+18 V \approx 46 V
\end{gathered}
$$

In this case, BAS16, 100V, or equivalent, would be selected.

For a dimming application a $22 \mu \mathrm{~F}$ capacitor would be required: if there is no dimming requirement, then a $10 \mu \mathrm{~F}$ capacitor will suffice.

2.13 Output Schottky Diode and Capacitor

The Schottky output diode is exposed to large currents when the converter is operated in critical conduction mode, CCM. Care should be taken to ensure adequate margins for the voltage and current ratings.

The required blocking voltage for $\mathrm{D}_{\text {Out }}$:

$$
\begin{gathered}
V_{\text {d_out }}>\left(\sqrt{2} \bullet 135 V_{\text {AC_max }} \bullet \frac{N_{\mathrm{S}}}{N_{\mathrm{P}}}\right)+V_{\text {LEDstring }} \\
V_{\text {d_out }}>(191 V \bullet 0.1626)+20 V \approx 51 \mathrm{~V}
\end{gathered}
$$

See 3.2 Determine Transformer Turns Ratio for the N_{S} / N_{P} ratio. Select a Schottky diode with a 150 V rating.

The output diode is exposed to large peak currents.

$$
\begin{aligned}
& I_{\mathrm{d}_{-} \mathrm{rms}}=I_{\mathrm{rms}} \bullet \sqrt{\frac{1-D_{\max }}{D_{\max }}} \bullet \frac{V_{\mathrm{ro}}}{V_{\mathrm{LEDstring}}+V_{\mathrm{f}}} \\
& I_{\mathrm{d} _\mathrm{rms}} \approx 0.213 A_{\mathrm{rms}} \bullet 1 \bullet 6.135=1.31 A_{\mathrm{rms}}
\end{aligned}
$$

See 2.4 Primary Inductor Currents Calculation. For adequate margin, select a $3 \mathrm{~A}_{\mathrm{rms}}$ diode, such as STPS3150V.

The output capacitor can be selected based on the desired output voltage ripple. The dynamic resistance of the LED driven at a given current should also be considered, as this will determine the current ripple through the LED string.
In this application, the LEDs have a dynamic resistance of 1Ω measured at 500 mA operating current. 6 LEDs result in 6Ω of dynamic resistance.

$$
\begin{gathered}
V_{\text {out_rip }}=I_{\text {LED_max }} \bullet R_{\text {dynamic }} \\
V_{\text {out_rip }}=500 \mathrm{~mA} \bullet 6 \Omega=3 V_{\mathrm{PP}}
\end{gathered}
$$

The output capacitor can be approximated:

$$
\begin{gathered}
C_{\text {out }}=\frac{2 \bullet I_{\text {LED }} \text { max }}{V_{\text {out rip }} \bullet 2 \bullet \pi \bullet 120 H z} \\
C_{\text {out }}=\frac{2 \bullet 500 m A}{3 V_{\mathrm{PP}} \bullet 2 \bullet \pi \bullet 120 \mathrm{~Hz}} \approx 442 \mu F
\end{gathered}
$$

Select two $220 \mu \mathrm{~F}$ capacitors, EEV-FM1V221L. These capacitors are rated at $105^{\circ} \mathrm{C}$ for 4000 hours with 100 kHz frequency.

3 Transformer Design

A step-by-step guide for transformer design will be presented here. Primary inductance and turns ratio will be calculated, and the appropriate wire size will be selected. The transformer core and coil former will be selected to support design power requirements, and a general guideline will be presented for transformer construction to achieve the best efficiency, and avoiding transformer saturation at higher temperatures.

3.1 Primary Inductance Calculation

$$
\begin{gathered}
L_{\text {pri }}=\frac{\left(V_{\mathrm{DC} \text { bulk } \min } \bullet \eta \bullet D_{\text {max }}\right)^{2}}{2 \bullet P_{\mathrm{IN}} \bullet F_{\mathrm{S}}} \\
L_{\text {pri }}=\frac{(127.3 \mathrm{~V} \bullet 0.85 \bullet 0.5)^{2}}{2 \bullet 12 \mathrm{~W} \bullet 67 \mathrm{kHz}} \approx 1.82 \mathrm{mH}
\end{gathered}
$$

3.2 Determine Transformer Turns Ratio

$$
\frac{V_{\text {LEDstring }}}{V_{\text {IN }}}=\frac{N_{\mathrm{S}}}{N_{\mathrm{P}}} \bullet \frac{D_{\max }}{1-D_{\max }}
$$

Secondary to primary turns ratio:

Where V_{f} is the voltage drop of the output diode.

$$
\frac{N_{\mathrm{S}}}{N_{\mathrm{P}}}=\frac{20 V+0.7 \mathrm{~V}}{\sqrt{2} \bullet 90 \mathrm{~V}} \cdot \frac{1-0.5}{0.5} \approx 0.1626
$$

The auxiliary to primary turns ratio:

$$
\begin{gathered}
\frac{N_{\mathrm{A}}}{N_{\mathrm{P}}}=\frac{V_{\text {aux } \max }+V_{\mathrm{f}}}{\sqrt{2} \bullet V_{\mathrm{AC} _\min }} \bullet \frac{1-D_{\max }}{D_{\max }} \\
\frac{N_{\mathrm{A}}}{N_{\mathrm{P}}}=\frac{18 \mathrm{~V}+0.7 \mathrm{~V}}{\sqrt{2} \bullet 90 \mathrm{~V}} \bullet \frac{1-0.5}{0.5} \approx 0.1469
\end{gathered}
$$

The auxiliary to secondary turns ratio:

$$
\begin{gathered}
\frac{N_{\mathrm{A}}}{N_{\mathrm{S}}}=\frac{V_{\text {aux } \max }+V_{\mathrm{f}}}{V_{\text {LEDstring }}+V_{\mathrm{f}}} \\
\frac{N_{\mathrm{A}}}{N_{\mathrm{S}}}=\frac{18 \mathrm{~V}+0.7 \mathrm{~V}}{20 V+0.7 V} \approx 0.9034
\end{gathered}
$$

3.3 Determine Primary Winding Wire Size

The first step is to find the RMS current through the primary winding, which can be approximated with the following equation:

$$
\begin{gathered}
I_{\mathrm{rms}}=I_{\text {pri_peak }} \bullet \sqrt{\frac{D_{\max }}{3}} \\
I_{\mathrm{rms}}=0.522 A_{\text {peak }} \bullet \sqrt{\frac{0.5}{3}} \approx 0.213 A_{\mathrm{rms}}
\end{gathered}
$$

The primary winding wire area can be calculated:

$$
A_{\mathrm{w} p \mathrm{pri}}=\frac{I_{\mathrm{rms}}}{J_{\max }} \approx \frac{0.213 A_{\mathrm{rms}}}{6 \mathrm{~A} / \mathrm{mm}^{2}}=0.0355 \mathrm{~mm}^{2}
$$

Where $J_{\max }$ is the current density of a wire, which is stated by the wire manufacturer to be $6 \mathrm{~A} / \mathrm{mm}^{2}$.
The diameter is determined by the following formula:

$$
\text { Wire Diameter }=2 \cdot \sqrt{\frac{A_{\mathrm{W}}}{\pi}}=\sqrt{\frac{A_{\mathrm{W}}}{\pi / 4}} \approx \sqrt{\frac{A_{\mathrm{W}}}{0.7854}}
$$

$$
D_{\mathrm{w} _\mathrm{pri}} \approx \sqrt{\frac{0.0355 \mathrm{~mm}^{2}}{0.7854}} \approx 0.213 \mathrm{~mm}
$$

From Table 1: Wire Gauge Table this is converted to 32 AWG.

3.4 Determine Secondary Winding Wire Size

The peak current of secondary winding can be determined by the following formula:

$$
I_{\text {see_peak }}=\frac{2 \bullet I_{\text {LEDmax }}}{1-D_{\max }}=\frac{2 \bullet 0.5 A}{1-0.5}=2 A_{\text {peak }}
$$

The RMS current can be found:

$$
I_{\text {sec_rms }}=I_{\text {sec_peak }} \cdot \sqrt{\frac{1-D_{\text {max }}}{3}} \approx 2 A_{\text {peak }} \bullet 0.408 \approx 0.817 A_{\text {rms }}
$$

Calculate the secondary wire size:

$$
A_{\mathrm{w}_{-} \mathrm{sec}}=\frac{I_{\mathrm{sec} \mathrm{rms}}}{6} \approx \frac{0.817 A_{\mathrm{rms}}}{6} \approx 0.136 \mathrm{~mm}^{2}
$$

Calculate the secondary wire diameter:

$$
D_{\mathrm{w}_{-} \mathrm{sec}} \approx \sqrt{\frac{0.136 \mathrm{~mm}^{2}}{0.7854}} \approx 0.416 \mathrm{~mm}
$$

Convert using Table 1: Wire Gauge Table to AWG 26.

3.5 Determine Auxiliary Winding Wire Size

The maximum current in the auxiliary winding can be calculated using:

$$
I_{\text {aux_peak }}=\frac{2 \bullet I_{\text {aux_max }}}{1-D_{\max }}=\frac{2 \bullet 30 m A}{1-0.5}=0.12 A_{\text {peak }}
$$

The RMS current can be calculated:

$$
I_{\text {aux_rms }}=I_{\text {aux } _ \text {peak }} \cdot \sqrt{\frac{1-D_{\max }}{3}} \approx 0.049 A_{\mathrm{rms}}
$$

The required wire area is given:

$$
A_{\mathrm{w} _ \text {aux }}=\frac{I_{\mathrm{aux} \text { rms }}}{6} \approx 0.0082 \mathrm{~mm}^{2}
$$

Wire diameter:

$$
D_{\mathrm{w} _ \text {aux }} \approx \sqrt{\frac{0.0082 \mathrm{~mm}^{2}}{0.7854}} \approx 0.102 \mathrm{~mm}
$$

Convert using Table 1: Wire Gauge Table to AWG 38.

Table 1: \quad Wire Gauge Table

American Wire Gauge (AWG)	Equivalent Wire Diameter (mm)	Equivalent Wire Area $\left(\mathrm{mm}^{2}\right)$
40	0.0799	0.00501
39	0.0897	0.00632
38	0.101	0.00797
37	0.113	0.01
36	0.127	0.0127
35	0.143	0.016
34	0.16	0.0201
33	0.18	0.0254
32	0.202	0.032
31	0.227	0.0404
30	0.255	0.051
29	0.286	0.0642
28	0.321	0.081
27	0.361	0.102
26	0.405	0.129
25	0.455	0.162
24	0.511	0.205
23	0.573	0.258
22	0.644	0.326
21	0.723	0.41
20	0.812	0.518
19	0.912	0.653
18	1.024	0.823
17	1.15	1.038
16	1.29	1.31
15	1.45	1.65
14	1.63	2.08
13	1.83	2.62
12	2.05	3.31
11	2.3	4.17
10	2.59	5.26
9	2.91	6.63
8	3.26	8.37
7	3.67	10.55
6	4.11	13.3
5	4.62	16.75
4	5.19	21.15
3	5.83	26.67
2	6.54	33.62
1	7.35	42.4

3.6 Select Inductor Core \& Calculate Turns

The Ferroxcube catalog lists the following specifications for the E20/10/5 core set.

- $\Sigma\left(\mathrm{I}_{\mathrm{e}} / \mathrm{A}_{\mathrm{e}}\right)$ core factor $=1.37 \mathrm{~mm}^{-1}$
- V_{e} effective volume $=1340 \mathrm{~mm}^{3}$
- I_{e} effective length $=42.8 \mathrm{~mm}$
- A_{e} effective area $=31.2 \mathrm{~mm}^{2}$

The air gap, G, of 0.3 mm may be used for initial calculation. The effective permeability of the core can be calculated:

$$
\mu_{\mathrm{e}}=\frac{\mu_{\mathrm{i}}}{1+\frac{G \bullet \mu_{\mathrm{i}}}{l_{\mathrm{e}}}}
$$

Where $\mu_{\mathrm{i}}=2000$ (for N27 material or 1P2400) and $\mathrm{G}=0.3 \mathrm{~mm}$.

$$
\mu_{\mathrm{e}}=\frac{2000}{1+\frac{0.3 m m \bullet 2000}{42.8 m m}} \approx 133
$$

Calculate Inductance Factor A_{L} for this core:

$$
\begin{gathered}
A_{\mathrm{L}}=\frac{\mu_{\mathrm{o}} \bullet \mu_{\mathrm{e}}}{\sum \frac{l_{\mathrm{e}}}{A_{\mathrm{e}}}} \\
A_{\mathrm{L}} \approx \frac{4 \pi \bullet 10^{-7} \mathrm{H} \bullet 133}{m \bullet \text { turn }^{2}} \cdot \frac{10^{-3}}{1.37} \approx \frac{121.99 \mathrm{nH}}{\text { turn }^{2}}
\end{gathered}
$$

Where $\mu_{0}=$ vacuum permeability $=4 \pi^{*} 10^{-7} \mathrm{H} / \mathrm{m}$.

Calculate number of turns for the primary winding:

$$
N_{\mathrm{pri}}=\sqrt{\frac{L_{\mathrm{pri}}}{A_{\mathrm{L}}}} \approx \sqrt{\frac{1.82 m H}{121.99 \mathrm{nH}} \bullet \text { turn }^{2}} \approx 122 \text { turns }
$$

Calculate the maximum flux density:

$$
\begin{gathered}
B_{\max }=N_{\text {pri }} \bullet I_{\text {pri_peak }} \bullet \frac{A_{\mathrm{L}}}{A_{\mathrm{e}}} \\
B_{\max } \approx \frac{122 \text { turn } \bullet 0.522 A_{\text {peak }} \bullet \frac{121.99 \mathrm{nH}}{\text { turn }^{2}}}{31.2 \mathrm{~mm}^{2}} \approx 0.248 \mathrm{~T}
\end{gathered}
$$

Note that $\mathrm{B}_{\text {max }}$ for 1 P 2400 , MnZn ferrite, is 0.36 T at $100^{\circ} \mathrm{C}$.

Calculate number of turns for secondary and auxiliary windings:

$$
\begin{aligned}
& N_{\mathrm{sec}}=N_{\mathrm{pri}} \bullet \frac{N_{\mathrm{S}}}{N_{\mathrm{P}}} \approx 122 \text { turns } \bullet 0.1626 \approx 20 \text { turns } \\
& N_{\mathrm{aux}}=N_{\mathrm{pri}} \bullet \frac{N_{\mathrm{A}}}{N_{\mathrm{P}}} \approx 122 \text { turns } \bullet 0.1468 \approx 18 \text { turns }
\end{aligned}
$$

Calculate to make sure windings will fit the winding area of coil former. The Ferroxcube data sheet provides information for 8 -pin coil former and specifies winding area of $27 \mathrm{~mm}^{2}$.

The fill factor has to be taken into consideration as this will affect winding area for this coil former. In general we can use fill factor Ku of 0.3 to 0.7 as a starting point. In this case 0.3 will be selected.

$$
\begin{gathered}
\text { Total Winding Area }=\frac{1}{K u} \bullet\left[\left(N_{\mathrm{pri}} \bullet A_{\mathrm{w}_{-} \mathrm{pri}}\right)+\left(N_{\mathrm{sec}} \bullet A_{\mathrm{w}_{-} \mathrm{sec}}\right)+\left(N_{\mathrm{aux}} \bullet A_{\mathrm{w}_{-} \text {aux }}\right)\right] \leq 27 \mathrm{~mm}^{2} \\
\text { Total Winding Area } \approx 3.33 \bullet\left[\left(122 \bullet 0.0355 \mathrm{~mm}^{2}\right)+\left(20 \bullet 0.136 \mathrm{~mm}^{2}\right)+\left(18 \bullet 0.0081 \mathrm{~mm}^{2}\right)\right] \leq 27 \mathrm{~mm}^{2} \\
\text { Total Winding Area } \approx 24 \mathrm{~mm}^{2} \leq 27 \mathrm{~mm}^{2}
\end{gathered}
$$

Note: The total winding area should not be exceeded due to the selection of approximate standard wire gauges from Table 1: Wire Gauge Table.

3.7 Flyback Transformer Construction

The transformer block diagram shows the primary split into two sections of 61 turns each. The secondary and auxiliary are wound between the two primary windings. The transformer stack-up has three layers of insulation tape between the primary and the secondary side. This method enables the transformer to pass the safety standard for electrical strength requirement. In the
previous step, we selected an air gap of 0.3 mm as our starting point. The air gap is critical because it allows the transformer to extend its maximum saturation; however, if the gap is larger, then it could contribute to higher leakage inductance. In this example, it is possible to achieve a leakage inductance less than 2\% of primary.

For additional information please visit our website at: www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

