The Shock Block® SB5000

The Shock Block SB5000 series is a personnel protection device designed to meet the requirements for GFCIs and special-purpose GFCIs (SPGFCIs) defined by UL 943 and UL 943C, and:

- Protects personnel from electrical shock where standard GFCI breakers and receptacles are not available
- Offers an comprehensive solution to detect leakage current and isolate electrical hazards to prevent fatal shocks from occurring
- Monitors the continuity of the ground circuit to isolate electrical hazards before they lead to shock events
- Prolongs the life of the internal contactor by offering undervoltage, brownout and chatter detection
- Is available as a GFCI, special-purpose GFCI, and equipment ground-fault protective device (EGFPD)
 - GFCI models have a fixed 6 mA trip level (Class A)
 - Special-purpose GFCI models have a fixed 20 mA trip level (Class C and D)
 - EGFPD models can be set to trip at 6, 10, 20…100 mA in increments of 10 mA

1. NEMA 4X & IP69K Rated Enclosure
 Prevents access to hazardous parts and provides protection against water, humidity and corrosion.

2. Lockable Latch
 Allows for a tamper resistant installation so that settings can only be changed by authorized personnel.

Littelfuse.com/ShockProtection
Commercial kitchens now require a Class A GFCI for 208 V equipment up to 100 A; for applications where Class A GFCIs cannot be applied, utilize Class C & D special-purpose GFCI models with UL 943C Listing.

The SB5000 meets all UL 943 and 943C requirements and more:

- Reliable performance
 - 85%, 100%, and 110% of the rated voltage
 - Full-load and no-load
 - -35 °C (-31 °F) to +66 °C (+151 °F)
 - Leakage-current return path – ground-wire monitor
 - SCCR of 10 kA for 32 and 60 A models, and 50 kA for 80 and 100 A models
- Environmental considerations
 - NEMA 4X and IP69K rated enclosure
 - UL 943 inverse time trip curve
 - UL 943 fixed trip level (GFCI 6 mA)
 - UL 943C fixed trip level (SPGFCI 20 mA)
Common 208 V Appliances in Commercial Kitchens

In commercial kitchens, the combination of a wet environment, stainless steel equipment and conductive surfaces creates a situation where shock is more likely to occur. Cooking equipment must be movable to meet sanitation standards, requiring appliances to be connected via plug and cord. Flexible cables are prone to wear and tear, and when the loads get larger, so do the cables. Larger conductors are less flexible, and the portable equipment they supply are larger and heavier too.

While dishwashers are often permanently installed – they are always required to be GFCI protected because of their proximity to water, heat, and electricity. The NEC only requires GFCI protection for 60 A and below, but Littelfuse offers additional protection all the way up to 100 A.
Common 3-Phase Loads in Food Manufacturing

In food and beverage processing, the environment is similar to the kitchen, except with even larger loads, harsher wash down requirements, and even higher voltages. So the cables for all the heavy portable equipment are prone to wear and tear, the cable couplers are more susceptible to water ingress from the wet environment, and the shock hazards are just as lethal at the higher industrial voltages.

The SB5000’s NEMA 4X and IP69K rated enclosures allow for protection and operation out on the production floor instead of complicated installations in dry electrical rooms. Utilizing the ground check feature available on every model of the Shock Block, is a proactive way to isolate the hazard caused by damaged cords and plugs before someone gets shocked.
In Commercial Garages, Service Bays, and Maintenance Shops, the frequent use of portable equipment and the everchanging environment to accommodate different tasks can create situations where shock is more likely to occur. With so much portable equipment, and each worker focused on the task in front of them, leakage current from damaged cords and cables can present itself to those unsuspecting personnel.

For welding applications if the “working ground” lead is damaged or not setup properly, then welding current will take alternate paths through facility structure, ground conductors, and conduit fittings. When this stray current runs through conduit or control panels, it causes the conductors to heat up and melt insulation. Use the SB5000’s built-in ground monitoring to make sure the effective ground-fault current path stays intact and proactively prevents future shock hazards from occurring.
GFCIs AND SPECIAL-PURPOSE GFCIs ARE VITAL WHERE PEOPLE, ELECTRICAL EQUIPMENT, AND WATER ARE PRESENT

1. Waste Water Facilities
2. General Manufacturing
3. Movie Sets
4. Amusement Parks/Swimming Pools
5. Fountains
6. Oil and Gas
7. Mining
8. Greenhouses
Success Stories

Commercial Kitchens
One of the top fast-food chains in America dedicated to a people-first workplace, uses five Shock Block GFCIs per location. When the NEC updated 210.8(B) requiring shock protection on three-phase 208 V plug-in equipment 100 A and below, the company didn’t hesitate to add the protection. To them, this was more than code compliance. The Shock Block provides invisible shock protection to workers ensuring their safety. That’s a good recipe for business.

Food & Beverage Processing
A global food manufacturer with a goal to send everyone home safe from work every day uses the Shock Block SPGFCI as a failsafe method to prevent electrical shock and eliminate risk to workers. In their manufacturing process, they use stainless equipment that is subject to frequent wash downs. The combination of electricity, metal, and water is a recipe for dangerous electrical incidents. Safety training and proper use of PPE are stressed, but there’s still a risk of human error. This manufacturer uses the SB5000 as a proactive engineering control to remove the risk of human error and keep workers safe.

Automotive Service Garages
With over 400 service stations nation-wide, and growing, keeping the business running as smoothly as the vehicles is critical for this automotive service chain. Service garages are vulnerable because sharp tools used can damage cords and stray currents from welding can heat up conduit and melt conductors inside. This leads to leakage currents and compromised ground conductors—a hazardous situation. This partner was an early adopter when the NEC 210.8(B) required GFCI protection for any plug and cord equipment that is 208 V three-phase 100 A or below. They use 6 Shock Block GFCIs for each location to not only meet code, but also drive a safer workplace.

Television and Film Production
The Rental Shock Block GFCI has been working behind the scenes since it was originally designed for the motion picture industry in the late 90’s. For film crews and cast, our high current rental GFCI provides the ultimate protection for people and equipment working in dangerous environments where electricity must coexist with water. Winner of the 1999 Academy Award® for Scientific and Engineering Achievement and is currently being used on several popular productions.
General Manufacturing
When industrial equipment rolls over electrical cords, electrical shock incidents become a risk. A global manufacturer of window treatments took a proactive approach to ensure worker safety so they wouldn’t have to face an electrical injury or fatality. The manufacturer went above the minimum code requirement of PPE alone to install the SB5000 for three-phase systems, where the line-to-line voltage is 480 V, as an engineering control to proactively protect personnel from shock.

Greenhouses
The indoor farming market is rapidly growing to meet the ever-increasing food demand. The horticultural lighting equipment and watering systems used in these applications have flexible cords with connectors and plugs. This setup is common in the industry and now requires GFCI and SPGFCI protection to safeguard workers from electrical shock. Littelfuse Shock Block is the preferred solution for a system integrator that has been servicing the greenhouse industry for multiple generations.

Fountains and Water Parks
When the most visited vacation resort in the world needed to comply with new NEC updates requiring GFCI protection for fountains they contacted Littelfuse. The Shock Block is installed on 480 V, 30 A outlets around the resort to keep little—and big-kids safe while they splash in the fountains on hot summer days.

Water/Wastewater
A municipal water utility company that supplies water to more than three million residents wanted to protect its workers from shock hazards. The facility has two tanks the size of Olympic swimming pools. The tanks must be manually cleaned requiring workers to enter while water is still present, and the 600 V submersible pumps are running. The company chose the Littelfuse Shock Block EGFPD and installed them in the motor control centers that supply power to each pump. If a device senses a ground fault above the trip setting, it will open the circuit very quickly to protect workers from shock.
How the Shock Block Works

The SB5000 detects leakage current and interrupts the circuit, significantly reducing or eliminating the shock potential. One key part of the additional safety features is that the SB5000 also monitors the ground wire from the SB5000 to the load for continuity. If the wire is broken or becomes loose, the SB5000 will signal an alarm and de-energize the circuit in less than half of a second.

Physiological Effects of 50/60 Hz Current Flowing Through the Body

<table>
<thead>
<tr>
<th>Current in Milliamperes</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Slight shock felt</td>
</tr>
<tr>
<td>6-25 (women)</td>
<td>Faint tingle</td>
</tr>
<tr>
<td>9-30 (men)</td>
<td>Painful shock. Muscular control is lost. Person may not be able to let go of components.</td>
</tr>
<tr>
<td>150</td>
<td>Respiratory arrest occurs along with severe muscular contractions; death is possible.</td>
</tr>
<tr>
<td>1,000</td>
<td>Cardiac arrest and severe burns occur</td>
</tr>
<tr>
<td>4,300</td>
<td>Ventricular fibrillation occurs. Muscles contract and nerve damage occurs. Death is likely.</td>
</tr>
</tbody>
</table>

Shock Block SB5000 Special-Purpose GFCI Protection Curve

The UL 943 inverse-time curve allows momentary transient conditions to enable operations in real world installations. The boundary between the green and the red zone defines the maximum trip time allowed by UL 943. Therefore, for any given fault current, the device must operate before that time is exceeded to prevent dangerous current from flowing through the body.
Technical Specifications

SB5000 Industrial Shock Block

Voltage Rating
208 V, 480 V, 600 V

Current Rating
32, 60, 80, or 100 A

System Type
Three-phase, 3-wire (no neutral), 60 Hz; Single-phase, 2-wire (no neutral), 60 Hz; Single-phase, 3-wire (with neutral), 60 Hz for EGFPD versions only

Short-Circuit Current Rating
10,000 A (for SB5032 and SB5060); 50,000A (for SB5080 and SB5100)

Trip Level Settings
Fixed at 6 mA (Class A models); Fixed at 20 mA (Class C/D models)
Select 6, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mA (EGFPD models)

Trip Time Setting
Inverse time curve according to UL 943

Ground Monitoring Circuit
Selectable short or Zener termination; Fail-safe; CSA M421 compliant

Enclosure
IP 69K and NEMA 4X (Outdoor), Polycarbonate, Lockable

Operating Temperature
-35 °C (-31 °F) to 40 °C (104 °F), up to 66 °C (151 °F) with derating

Dimensions
For 32 A and 60 A:
H 285.6 mm (11.25 in.); W 244.4 mm (9.62 in.); D 119.6 mm (4.71 in.)

For 80 A and 100 A:
H 383.4 mm (15.09 in.); W 327.1 mm (12.88 in.); D 137.4 mm (5.5 in.)

Ordering Information

<table>
<thead>
<tr>
<th>ORDERING NUMBER</th>
<th>LOAD RATING (A)</th>
<th>VOLTAGE (V)</th>
<th>TRIP LEVEL (MA)</th>
<th>UL CLASS</th>
<th>ENCLOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB5032-001-0</td>
<td>32</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class C SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5032-201-0</td>
<td>480</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class D SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5032-301-0</td>
<td>600</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>UL 943 / UL 1053 EGFPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5032-011-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5032-211-0</td>
<td>480</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>NEMA 4X, wwlIP69K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5032-311-0</td>
<td>600</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5032-021-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5060-001-0</td>
<td>60</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class C SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5060-201-0</td>
<td>480</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class D SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5060-301-0</td>
<td>600</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>UL 943 / UL 1053 EGFPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5060-011-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5060-211-0</td>
<td>480</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>NEMA 4X, wwlIP69K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5060-311-0</td>
<td>600</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5060-021-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5080-001-0</td>
<td>80</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class C SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5080-201-0</td>
<td>480</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class D SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5080-301-0</td>
<td>600</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>UL 943 / UL 1053 EGFPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5080-011-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5080-211-0</td>
<td>480</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>NEMA 4X, wwlIP69K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5080-311-0</td>
<td>600</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5080-021-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5100-001-0</td>
<td>100</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class C SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5100-201-0</td>
<td>480</td>
<td>208</td>
<td>20 (Fixed)</td>
<td>UL 943C Class D SPGFCI</td>
<td></td>
</tr>
<tr>
<td>SB5100-301-0</td>
<td>600</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>UL 943 / UL 1053 EGFPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5100-011-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5100-211-0</td>
<td>480</td>
<td>6, 10–100 in increments of 10 (Select)</td>
<td>NEMA 4X, wwlIP69K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5100-311-0</td>
<td>600</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB5100-021-0</td>
<td>208</td>
<td>6 (Fixed)</td>
<td>UL 943 Class A GFCI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories

1. **1N5339B Termination Device**
 (Included)
 Axial-lead ground-check termination, included with SB6000 series

2. **SE-TA6-ASF-WL Termination Assembly**
 (Optional)
 Compact 12 W ground-check termination assembly with convenient mounting holes and wire leads.

3. **SE-TA6-SM Stud-Mount Termination Assembly**
 (Optional)
 Ground-check termination for submersible pumps (see manual for installation conditions).

4. **SE-TA6 Termination Assembly**
 (Optional)
 Termination assembly with terminals and mounting holes.
Littelfuse products are certified to many standards around the world. To check certifications on specific components, please refer to the specific product datasheet on Littelfuse.com.