Advance Technical Information

IXTA90N20X3

X3-Class **Power MOSFET™**

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	$T_{J} = 25^{\circ}C$ to $175^{\circ}C$	200	V		
	$T_{_J}$ = 25°C to 175°C, $R_{_{GS}}$ = 1M Ω	200	V		
V _{gss}	Continuous	±20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	$T_c = 25^{\circ}C$	90	A		
I _{DM}	$\rm T_{\rm c}$ = 25°C, Pulse Width Limited by $\rm T_{\rm _{JM}}$	220	А		
I _A	$T_c = 25^{\circ}C$	45	A		
E _{AS}	$T_c = 25^{\circ}C$	1	J		
dv/dt	$I_{_{ m S}} \leq I_{_{ m DM}}, V_{_{ m DD}} \leq V_{_{ m DSS}}, T_{_{ m J}} \leq 150^\circ C$	20	V/ns		
P _D	$T_c = 25^{\circ}C$	390	W		
T,		-55 +175	°C		
T _{JM}		175	°C		
T _{stg}		-55 +175	°C		
T	Maximum Lead Temperature for Soldering	g 300	°C		
dT/dt	Heating / Cooling rate, 175°C - 210°C	50	°C/min		
	1.6 mm (0.062in.) from Case for 10s	260	°C		
F _c	Mounting Force	1065 / 2.214.6	N/lb		
Weight		2.5	g		

Symbol (T ₁ = 25°C,	Test Conditions Unless Otherwise Specified)	Charao Min.	cteristic Typ.	/alues Max.	
BV _{DSS}	$V_{_{\mathrm{GS}}} = 0V, I_{_{\mathrm{D}}} = 250 \mu A$	200			V
V _{GS(th)}	$V_{_{DS}} = V_{_{GS}}, I_{_{D}} = 250 \mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{_{DS}} = V_{_{DSS}}, V_{_{GS}} = 0V$ $T_{_{J}} = 125^{\circ}C$			5 100	μΑ μΑ
R _{DS(on)}	$V_{gs} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			12	mΩ

TO-263

 $\mathsf{V}_{_{\mathsf{DSS}}}$

D25

 $\mathbf{R}_{\mathsf{DS(on)}}$

= 200V

= \leq

90A

 $12m\Omega$

G = Gate D = Drain S = Source Tab = Drain

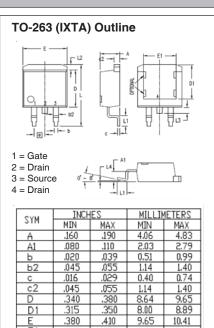
Features

• International Standard Package

- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings


Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

LIXYS

IXTA90N20X3

Symbol (T = 25°C, l	Test Conditions Inless Otherwise Specified)	Chai Min.	aracteristic Values Typ. Max			
$\frac{\mathbf{g}_{fs}}{\mathbf{g}_{fs}}$	$V_{\rm DS} = 10V, I_{\rm D} = 0.5 \cdot I_{\rm D25}, \text{Note 1}$	60	100	S		
R _{Gi}	Gate Input Resistance		1.4	Ω		
C _{iss}			5420	pF		
C _{oss}	$V_{_{GS}} = 0V, V_{_{DS}} = 25V, f = 1MHz$		930	pF		
C _{rss}			4	pF		
	Effective Output Capacitance					
C _{o(er)}	Energy related $\int V_{GS} = 0V$		420	pF		
C _{o(tr)}	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1300	pF		
t _{d(on)}	Resistive Switching Times		22	ns		
t, ($V_{gs} = 10V, V_{ps} = 0.5 \cdot V_{pss}, I_{p} = 0.5 \cdot I_{p25}$		26	ns		
t _{d(off)}	$R_{_{\rm GS}} = 5\Omega$ (External)		62	ns		
t _f	$H_{G} = 0.52$ (External)		13	ns		
Q _{g(on)}			78	nC		
Q _{gs}	$V_{gs} = 10V, V_{Ds} = 0.5 \bullet V_{Dss}, I_{D} = 0.5 \bullet I_{D25}$		23	nC		
Q _{gd}			22	nC		
R _{thJC}				0.32 °C/W		
-						

.245

.090

,040

.050

0

е

4

.<u>100</u>

6.22 2.5

14.61 2.29

1.02

1.27

0

14

IXYS REF: T 90N20X3(25-S202) 5-31-17-A

8.13

2.79

1.40

0.13

1.78

320

.625 .110

.055 .070

.005

Source-Drain Diode

Symbol					
(T _J = 25°C, L	Inless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{gS} = 0V$			90	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			360	Α
$V_{\rm SD}$	$I_{_{\rm F}} = I_{_{\rm S}}, V_{_{\rm GS}} = 0V, \text{ Note } 1$			1.4	V
t _{rr} Q _{RM} I _{RM}	I _F = 45A, -di/dt = 100A/μs V _R = 100V		124 650 10.5		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

	-									
IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065B1	6,683,344	6,727,585	7,005,734B2	7,157,338B2
by one or more of the following U.S. patents:	4,860,072	5,017,508	5,063,307	5,381,025	6,259,123B1	6,534,343	6,710,405B2	6,759,692	7,063,975B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728B1	6,583,505	6,710,463	6,771,478B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.