
SK625xD Series

RoHS -

Agency Reco	ognitions
Agency	Agency File Number
A	E71639

Main Features		
Symbol	Value	Unit
I _{T(RMS)}	25	А
V _{DRM} /V _{RRM}	1600	V
I _{gt}	35	mA

Description

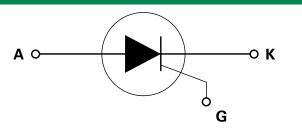
Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits

• Voltage capability up

- RoHS compliant
- Electrically isolated package "LD-Package" and UL Recognized for 2500V_{BMS}
- Surge capability up to 250 A


Applications

to 1600 V

Typical applications are AC solid-state switches, industrial power tools, line rectification 50/60Hz.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Schematic Symbol

Absolute Maximum Ratings – 25A SCR

Symbol	Parameter	Test Co	Test Conditions		Unit
V _{drm} /V _{rrm}	Repetitive Peak off-state/Reverse Voltage			1600	V
V _{DSM} /V _{RSM}	Non-repetitive peak off-state/Reverse voltage			1700	V
	SK625LD $T_c = 60^{\circ}C$		25	٨	
T(RMS)	RMS on-state current	SK625RD	$T_c = 90^{\circ}C$	- 25	A
		SK625LD T _c = 60°C		- 16	
T(AV)	Average on-state current	SK625RD	T _c = 90°C	0	A
	Deale see repetitive surge surrent	single half cycle; f = 50Hz; T _J (initial) = 25°C		250 300	A
TSM	Peak non-repetitive surge current single half cycle; f = 60Hz; T _J (initial) = 25°C				
²t	I²t Value for fusing	t _p = 8.3 ms		375	A²s
di/dt	Critical rate of rise of on-state current	4		100	A/µs
GM	Peak gate current	T _J = 125°C		1.5	A
P _{G(AV)}	Average gate power dissipation	T _J = 125°C		1	W
Г _{stg}	Storage temperature range			-40 to 150	°C
T _{.1}	Operating junction temperature range			-40 to 125	°C

x = package

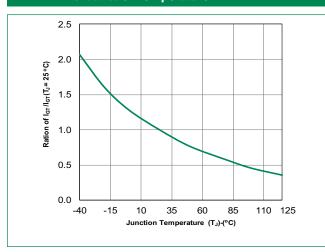
Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions		Value	Unit
I _{gt}	$V_{1} = 12V_{2}B = 200$	MAX.	35	mA
V _{GT}	$-$ V _D = 12V; R _L = 30 Ω	MAX.	1.5	V
dv/dt	$V_{\rm D} = 2/3 V_{\rm DRM}$; gate open; $T_{\rm J} = 125^{\circ}{\rm C}$	MIN.	2000	V/µs
V _{GD}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 125^{\circ}\text{C}$	MIN.	0.2	V
I _H	I _T = 500mA (initial)	MAX.	120	mA
t _q	$I_{T}=0.5A; t_{p}=50\mu s; dv/dt=5V/\mu s; di/dt=-30A/\mu s$	TYP.	25	μs
t _{gt}	$I_{g} = 2 \times I_{gT}; PW = 15 \mu s; I_{T} = 50 A$	TYP.	5	μs

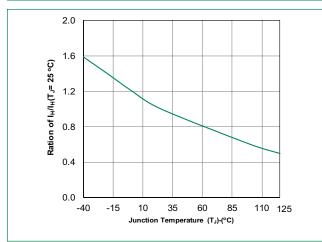
Notes :

x = package

Static Characteristics							
Symbol	Test Condition	Value	Unit				
V _{TM}	I _T = 50A; t _ρ = 380μs		MAX.	1.8	V		
	$T_{J} = 25^{\circ}C$	MAX.	10	μA			
	V _{DRM} / V _{RRM}	T_ = 125°C		4	mA		

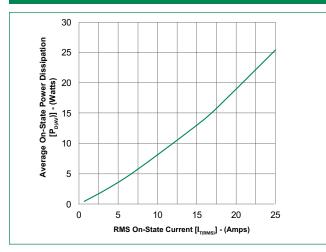
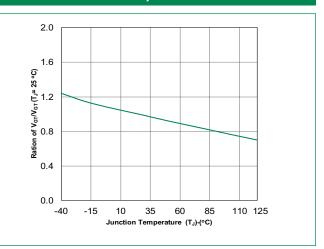
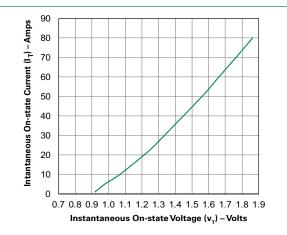

Thermal Resistances							
Symbol	Parameter	Value	Unit				
D	lunction to prov (AC)	SK625RD	1.0	9CAN/			
$R_{\theta(J-C)}$	Junction to case (AC)	SK625LD	1.9	°C/W			

Littelfuse Power


Thyristors

25 Amp Standard SCRs

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

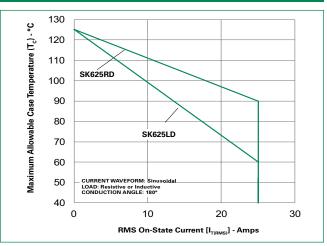

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: On-State Current vs. On-State Voltage (Typical)

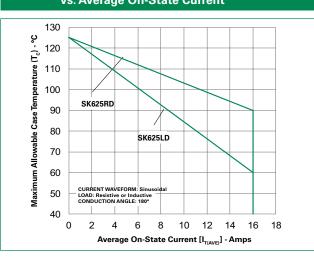


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

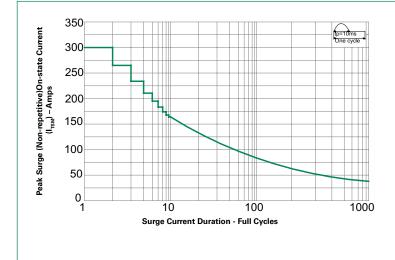


Figure 8: Surge Peak On-State Current vs. Number of Cycles

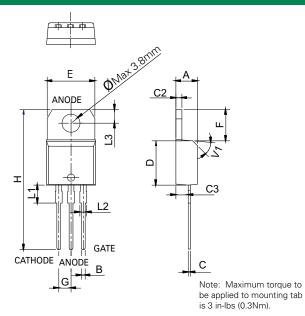
SUPPLY FREQUENCY: 50 Hz Sinusoidal LOAD: Resistive

RMS On-State Current: $[I_{\mbox{\tiny T(RMS)}}]$: Maximum Rated Value at Specified Case Temperature

Notes:

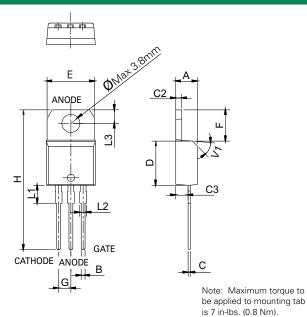
- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Environmental Specifications


Test	Specifications and Conditions
AC Blocking	JESD22-A108C, 80% V _{DRM} @125°C for 168 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 168 hours; 100V - DC: 85°C; 85% rel humidity
Resistance to Solder Heat	JESD22-B106C
Solderability	J-STD-022, category 3, test A

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

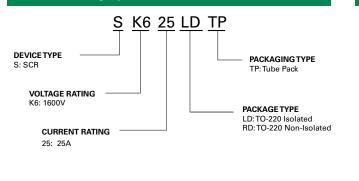

Thyristors 25 Amp Standard SCRs

Dimensions — TO-220AB (RD-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension			Inches			
Dimension	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.173		0.181
В	0.61		0.88	0.024		0.035
С	0.46		0.70	0.018		0.028
C2	1.21		1.32	0.048		0.052
C3	2.40		2.72	0.094		0.107
D	8.60		9.70	0.339		0.382
E	9.60		10.4	0.378		0.409
F	6.20		6.60	0.244		0.260
G		2.54			0.1	
Н	28.0		29.8	1.102		1.173
L1		3.75			0.148	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
V1		45°			45°	

Dimensions – TO-220AB (LD-Package) – Isolated Mounting Tab

Dimension	N	lillimeters	5	Inches		
Dimension	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.173		0.181
В	0.61		0.88	0.024		0.035
С	0.46		0.70	0.018		0.028
C2	1.21		1.32	0.048		0.052
C3	2.40		2.72	0.094		0.107
D	8.60		9.70	0.339		0.382
E	9.80		10.4	0.386		0.409
F	6.55		6.95	0.258		0.274
G		2.54			0.1	
Н	28.0		29.8	1.102		1.173
L1		3.75			0.148	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
V1		45°			45°	


Product Selector

Part Number	Gate Sensitivity	Туре	Package
SK625LD	35mA	Standard SCR	TO-220L
SK625RD	35mA	Standard SCR	TO-220R

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
SK625LDTP	SK625LD	2.2g	Tube	1000
SK625RDTP	SK625RD	2.0g	Tube	1000

Part Numbering System

Part Marking System

Date Code Marking Y:Year Code MM: Month Code XXX: Lot Trace Code

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.