$$
\begin{aligned}
& V_{\text {RRM }}=1200 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{FAV}}=75 \mathrm{~A} \\
& \mathrm{t}_{\mathrm{rr}}=230 \mathrm{~ns}
\end{aligned}
$$

Fast Recovery Epitaxial Diode

Part number

MEA 75-12DA
MEK 75-12DA
MEE 75-12DA

Common Cathode

Applications:

- Antiparallel diode for high frequency switching devices
- Free wheeling diode in converters and motor control circuits
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Package: TO-240AA

- Isolation voltage: 4800 V ~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Diode} \& \multicolumn{4}{|c|}{Ratings} \\
\hline Symbol \& Definitions \& Conditions \& \& min. \& typ. \& max. \& \\
\hline \(\mathrm{V}_{\text {RSM }}\) \& max. non-repetitive reverse blocking volta \& \& \(\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}\) \& \& \& 1200 \& V \\
\hline \(\mathrm{V}_{\text {RRM }}\) \& max. repetitive reverse blocking voltage \& \& \(\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}\) \& \& \& 1200 \& V \\
\hline \(\mathrm{I}_{\mathrm{R}}\) \& reverse current \& \[
\begin{aligned}
\& V_{R}=V_{\text {RRM }} \\
\& V_{R}=0.8 \cdot V_{\text {RRM }} \\
\& V_{R}=0.8 \cdot V_{\text {RRM }}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{array}{r}
2 \\
0.5 \\
34
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA} \\
\& \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{F}}\) \& forward voltage \& \[
\begin{aligned}
\& I_{F}=100 \mathrm{~A} \\
\& \mathrm{I}_{\mathrm{F}}=300 \mathrm{~A}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vv}}=125^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 2.17 \\
\& 1.85 \\
\& 2.64 \\
\& 2.58
\end{aligned}
\] \& V
V
V
V \\
\hline \(\mathrm{I}_{\text {frms }}\) \& RMS forward current \& \& \(\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}\) \& \& \& 107 \& A \\
\hline \(\mathrm{IFAV}^{(1)}\) \& average forward current \& \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}
\] \\
rectangular, \(d=0.5\)
\end{tabular} \& \(\mathrm{T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C}\) \& \& \& 75 \& A \\
\hline \[
\begin{aligned}
\& \mathbf{V}_{\mathrm{T0}} \\
\& \mathbf{r}_{\mathrm{T}} \\
\& \hline
\end{aligned}
\] \& threshold voltage slope resistance \& for power-loss calculations only \& \(\mathrm{T}_{\mathrm{v} J}=\mathrm{T}_{\mathrm{v} \text { (}}\) \& \& \& \[
\begin{aligned}
\& 1.48 \\
\& 3.65
\end{aligned}
\] \& \(\begin{array}{r}V \\ \mathrm{~m} \Omega \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
\& \mathbf{R}_{\mathrm{thJC}} \\
\& \mathbf{R}_{\mathrm{thCH}}
\end{aligned}
\] \& thermal resistance junction to case thermal resistance junction to heatsink \& \& \& \& 0.10 \& 0.45 \& \[
\begin{aligned}
\& \text { K/W } \\
\& \text { K/W }
\end{aligned}
\] \\
\hline \(\mathrm{P}_{\text {tot }}\) \& \& \& \(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\) \& \& \& 280 \& W \\
\hline \(\mathrm{I}_{\text {FSM }}\) \& max. surge forward current \& \[
\begin{array}{ll}
\hline \mathrm{t}=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine } \\
\mathrm{t}=10 \mathrm{~ms} \& (50 \mathrm{~Hz}) \text {, sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine }
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{v} J}=45^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& \hline 1200 \\
\& 1300 \\
\& 1080 \\
\& 1170
\end{aligned}
\] \& A
A
A
A \\
\hline \({ }^{12} t\) \& R't value for fusing \& \[
\begin{array}{ll}
\hline t=10 \mathrm{~ms} \& (50 \mathrm{~Hz}), \text { sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine } \\
\mathrm{t}=10 \mathrm{~ms} \& (50 \mathrm{~Hz}) \text {, sine } \\
\mathrm{t}=8.3 \mathrm{~ms} \& (60 \mathrm{~Hz}) \text {, sine }
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{v} J}=45^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{\mathrm{v},}=150^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 7200 \\
\& 7100 \\
\& 5800 \\
\& 5700
\end{aligned}
\] \& \(A^{2} S\)
\(A^{2} S\)
\(A^{2} S\)
\(A^{2} S\) \\
\hline \(t_{\text {rr }}\)

$\mathrm{I}_{\text {RM }}$ \& max. reverse recovery current
reverse recovery time \& $I_{F}=70 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$

- di/dt $=400 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{L} \leq 0.05 \mu \mathrm{H}$ \& \[
$$
\begin{aligned}
& \mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vJ}}=100^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{vJ}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

\] \& \& \[

$$
\begin{array}{r}
\hline 140 \\
230 \\
25 \\
33
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
200 \\
300 \\
30 \\
40
\end{array}
$$
\] \& ns

ns
A
A

\hline
\end{tabular}

(1) $\mathrm{I}_{\text {FAVM }}$ rating includes reverse blocking losses at $\mathrm{T}_{\text {VJM }}, \mathrm{V}_{\mathrm{R}}=0.8 \mathrm{~V}_{\text {RRM }}$, duty cycle $\mathrm{d}=0.5$

Package	TO-240AA					Ratings			
Symbol	Definitions	Conditions				min.	typ.	max.	
$\mathrm{I}_{\text {RMS }}$	RMS current	per terminal						200	A
T_{v}	virtual junction temperature					-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature					-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature					-40		125	${ }^{\circ} \mathrm{C}$
Weight							76		g
M_{D}	mounting torque					2.5		4	Nm
M_{T}	terminal torque					2.5		4	Nm
$\begin{aligned} & \mathbf{d}_{\mathrm{Spp} / \mathrm{App}} \\ & \mathbf{d}_{\mathrm{Spb} / \mathrm{Apb}} \end{aligned}$	creepage distance on surface \| striking distance through air			terminal to terminal terminal to backside	$\begin{aligned} & \hline 13.0 \\ & 16.0 \end{aligned}$	$\begin{array}{r} 9.7 \\ 16.0 \end{array}$			mm mm
$\mathrm{V}_{\text {ISoL }}$	isolation voltage	$\begin{aligned} & t=1 \text { second } \\ & t=1 \text { minute } \end{aligned}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS} ; \mathrm{I}_{\text {ISoL }} \leq 1 \mathrm{~mA}$			$\begin{aligned} & 4800 \\ & 4000 \end{aligned}$			V

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MEA 75-12DA	MEA 75-12DA	Box	36	469130
Standard	MEK 75-12DA	MEK 75-12DA	Box	36	468541
Standard	MEE 75-12DA	MEE 75-12DA	Box	36	469297

General tolerance: DIN ISO 2768 class „c"

Common Cathode

Phase-Leg

Curves

Fig. 1 Typ. forward current I_{F} vs. voltage drop V_{F} per leg

Fig. 4 Typ. dynamic parameters $Q_{r}, I_{R M}$ vs. junction temperature T_{v}

Fig. 2 Typ. reverse recovery charge Q_{r} versus -dif $/$ dt

Fig. 5 Typ. recovery time t_{rr} versus - $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 7 Typ. transient thermal impedance junction to heatsink

