

Date: - 1st June, 2017

Data Sheet Issue: - 2

Water Cooled Heatsink Type XW180GA34#

<u>Characteristics – Double side cooling, 2 coolers + 1 Semiconductor</u>

	PARAMETER	TYP.	TEST CONDITIONS	UNITS
R _{th (C/W)}	Cooler-input water thermal resistance	3	6l/m flow rate, Power – 2.5kW	K/kW
R _{th (C/W)}	Cooler-input water thermal resistance	2.3	10l/m flow rate, Power – 2.5kW	K/kW

<u>Characteristics – Double side cooling, 3 coolers + 2 Semiconductors</u>

	PARAMETER	TYP.	TEST CONDITIONS	UNITS
R _{th (C/W)}	Cooler-input water thermal resistance	3.8	6l/m flow rate, Power – 2.5kW	K/kW
R _{th} (C/W)	Cooler-input water thermal resistance	2.7	10l/m flow rate, Power – 2.5kW	K/kW

Physical/Electrical properties

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS	UNITS
ΔΡ	Pressure difference between input and output water per cooler	-	63	-	6l/m	kPa
ΔΡ	Pressure difference between input and output water per cooler	-	140	-	10l/m	kPa
М	Mass without busbar (XW180GC34A)	-	1.49	-		kg
М	Mass with busbar (XW180GC34B)	-	1.79	-		kg
	Dimensions	See outline drawing				

Mechanical properties

	PARAMETER	MIN.	TYP.	MAX.	UNITS
	Flatness of contact area	1	20	-	μm
Ra	Roughness of contact area	-	0.8	-	μm
	Clamping force	-	-	13	N/mm²
	Finish of contact area	Nickel-plating 10μm bright			
	Hydraulic fitting	3/8" BSPP			

^{*} For other busbar/mechanical configurations please consult the factory.

Notes

The graphs on the following pages are typical values at 2500W.

1.0 - Temperature reference points

Heatsink – in the cooler within 2mm of device centre Ambient – water temperature at the assembly input.

2.0 - Multiple cooler stacks

2.1 - 2 coolers/1 semiconductor

The temperature of the water entering the last cooler pair should be taken into account. The temperature rise of cooling water along the stack with respect to the ambient input water is $(\Delta T)W$ according to the formula shown below: -

$$(\Delta T)W = \frac{14.4 * P(n-1)}{F}$$

Where P is the power (in kW) dissipated in the semiconductor

n is the number of semiconductors

F is the water flow in Litres/min.

The rise in temperature of the last cooler pair with respect to the ambient input water is then: -

$$(\Delta T)C = (\Delta T)W + P * R_{thCW}$$

Where Rthcw is obtained from the curve for double side cooling on page 3

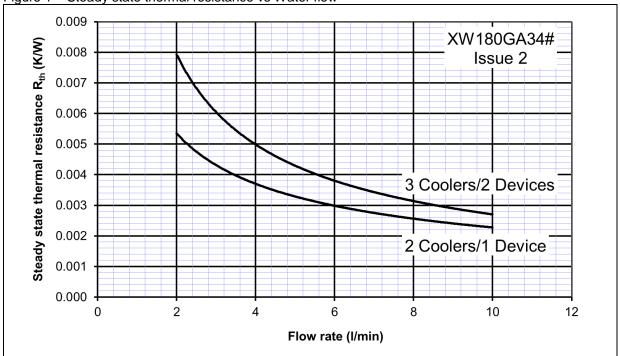
2.2 - (n + 1) coolers/n semiconductors (n greater than 2)

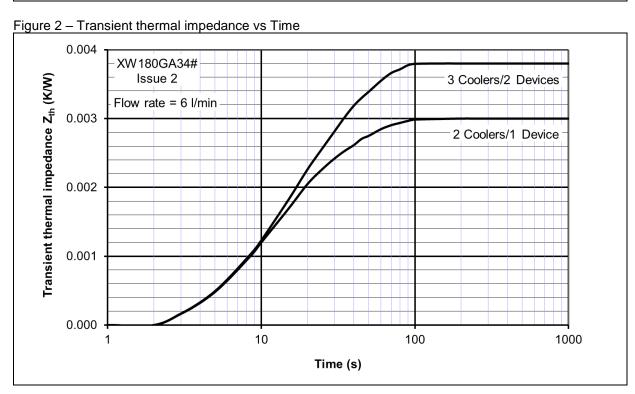
In any series stack of coolers with n greater than two, the hottest cooler will usually be the penultimate one in the down stream direction.

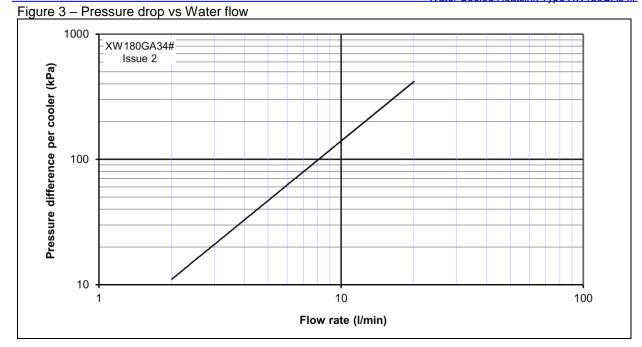
The inlet water temperature rise to the last but one cooler (relative to stack inlet) may be calculated according to:

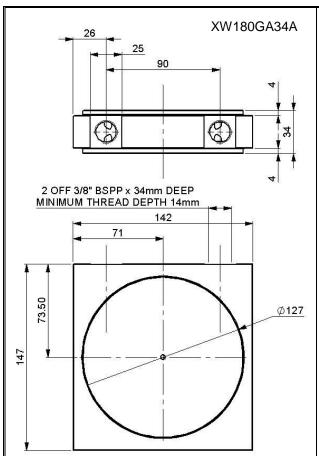
$$(\Delta T)W = \frac{14.4 * P(2n-3)}{2F}$$

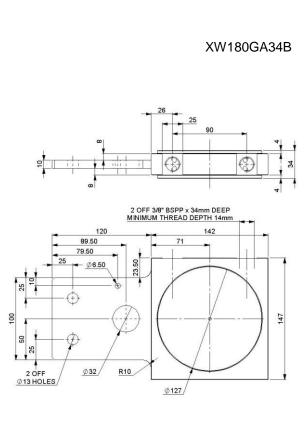
The effective temperature rise of the penultimate cooler with respect to the stack input water is given by:


$$(\Delta T)C = (\Delta T)W + P * R_{thCW}$$


Where R_{thCW} is obtained from the curve for 3 coolers on page 3


Curves





Outline Drawing & Ordering Information

ORDERING INFORMATION

(Please quote order code as below)

XW	180	G	Α	34	#		
Water cooler	Maximum flange diameter (mm)	Nominal poleface diameter	Material A = Aluminium	Cooler thickness (mm)	A = No busbar B = Busbar		

Typical order code: XW180GA34A – Assemblies water cooler, 180mm maximum flange diameter, made from aluminium, 34mm thick with no busbar.

IXYS Semiconductor GmbH

Edisonstraße 15 D-68623 Lampertheim Tel: +49 (62 06) 503-0 Fax: +49 (62 06) 503-627 E-mail: marcom@ixys.de

LIXYS UK WESTCODE

www.ixysuk.com

www.ixys.net

E-mail: sales@ixysuk.com

IXYS UK Westcode Ltd

Tel: +44 (0)1249 444524

Fax: +44 (0)1249 659448

IXYS Long Beach IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach

Langley Park Way, Langley Park,

Chippenham, Wiltshire, SN15 1GE.

CA 90815 Tel: +1 (562) 296 6584

Fax: +1 (562) 296 6585 E-mail: service@ixyslongbeach.com

IXYS Corporation 1590 Buckeye Dr.

Milpitas CA 95035-7418 Tel: +1 (408) 457-9000 Fax: +1 (408) 496-06 70 E-mail: sales@ixys.net

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without prior notice.

© IXYS UK Westcode Ltd.

