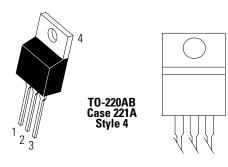


Additional Information

Accessories

Samples

Functional Diagram


Description

Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave, silicon gate-controlled devices are needed.

Features

- Blocking Voltage of 600 thru 800 Volts
- On-State Current Rating of 8 Amperes RMS at 80°C
- High Surge Current Capability80 Amperes
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- High Immunity to dv/dt 100 V/µsec Minimum at 125°C
- These are Pb-Free Devices

Pin Out

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	MCR8MG MCR8NG	V _{DRM} , V _{RRM}	600 800	V
On-State RMS Current (180° Conduction Angles; $T_c = 80$ °C)		I _{T (RMS)}	8.0	А
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, $T_C = 125^{\circ}C$)		I _{TSM}	80	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	26.5	A²sec
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	5.0	W	
Forward Average Gate Power (t = 8.3 ms, T_c = 80°C)		P _{GM (AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ s, T_{C} = 80°C)		I _{GM}	2.0	А
Operating Junction Temperature Range		T_{J}	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance	Junction-to-Case (AC) Junction-to-Ambient	R _{BJC} R _{BJA}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T_{L}	260	°C

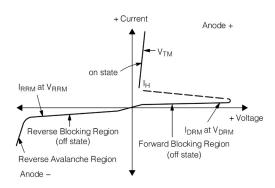
Electrical Characteristics - OFF (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
†Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	mA
$(V_{AK} = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I	-	-	2.0	mA

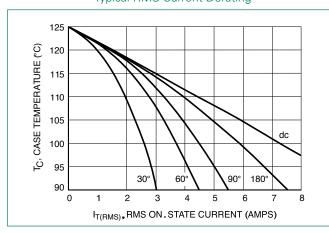
Electrical Characteristics - ON $(T_J = 25^{\circ}\text{C unless otherwise noted; Electricals apply in both directions)$

Characteristic	Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (I _{TM} = 16 A)	V_{TM}	_	-	1.8	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 100 \Omega$)	I _{GT}	2.0	7.0	15	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ V}, R_L = 100 \Omega$)	$V_{\rm GT}$	0.5	0.65	1.0	V
Gate Non-Trigger Voltage ($V_D = 12 \text{ V}, T_J = 125^{\circ}\text{C}, R_L = 100 \Omega$)	$V_{\rm GD}$	0.2	_	_	V
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = 200 mA)	I _H	4.0	17	30	mA
Latch Current ($V_D = 12 \text{ V}, I_G = 15 \text{ mA}$)	IL	6.0	20	40	mA

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, Gate Open, T_J = 125°C)	dv/dt	100	250	-	V/µs
Critical Rate of Rise of On–State Current (IPK = 50 A, Pw = 40 μ sec, diG/dt = 1 A/ μ sec, lgt = 50 mA	di/dt	_	_	50	A/ms


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Voltage Current Characteristic of SCR

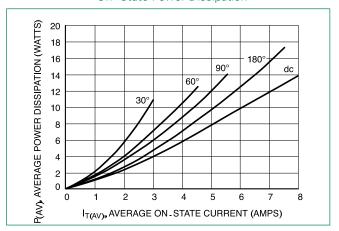

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1.Typical RMS Current Derating

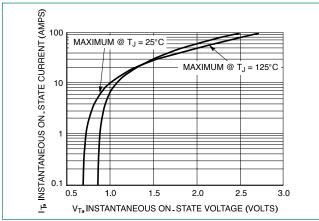


Figure 2. On–State Power Dissipation

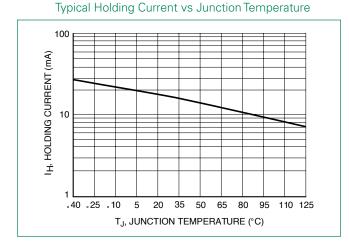
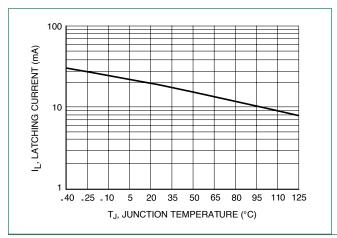
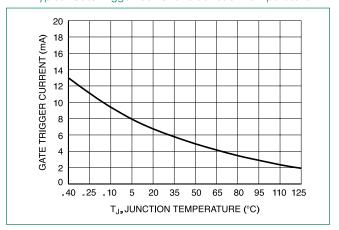

^{2.} Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Figure 3. Typical On–State Characteristics



VI, INGTANTANEOGO ON-STATE VOLTAGE (VOLTO)


Figure 5.

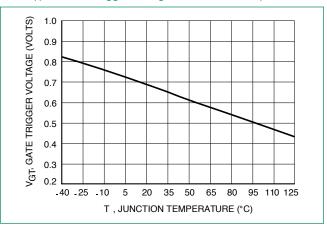
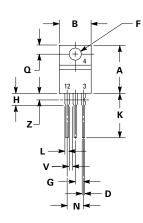
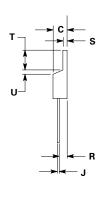

Figure 7.Typical Latching Current vs Junction Temperature

Figure 4.Typical Gate Trigger Current vs Junction Temperature

Figure 6.Typical Gate Trigger Voltage vs Junction Temperature

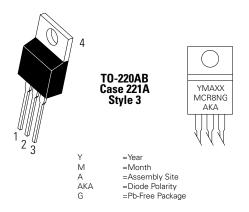




MCR8NG

Silicon Controlled Rectifiers — 600V - 800V

Dimensions


Pin Assignment				
1	Cathode			
2	Anode			
3	Gate			
4	Anode			
Ordering Information				

Inches Millimeters Dim Min Max Min Max Α 0.590 0.620 14.99 15.75 В 0.380 0.420 9.65 10.67 С 0.178 0.188 4.52 4.78 D 0.025 0.035 0.64 0.89 F 0.142 0.147 3.61 3.73 G 0.095 0.105 2.41 2.67 Н 0.110 2.79 0.130 3.30 0.61 J 0.018 0.024 0.46 Κ 0.540 0.575 13.72 14.61 0.060 0.075 1.52 1.91 L Ν 0.195 0.205 4.95 5.21 Q 0.105 0.115 2.67 2.92 R 0.085 0.095 2.16 2.41 s 0.045 0.060 1.14 1.52 Т 0.235 0.255 5.97 6.47 U 0.000 0.050 0.00 1.27 ٧ 0.045 1.15 0.080 2.04

_		0.00
Dimensioning And	Tolerancing Per Ansi Y	14.5m, 1982.

Controlling Dimension: Inch

Part Marking System

1	Cathode
2	Anode
3	Gate
4	Anode

Ordering Information

Device	Package	Shipping
MCR8NG	TO-220AB (Pb-Free)	1000 Units/ Box
MAC3030-8G	TO-220AB (Pb-Free)	1000 Units/ Box

^{3.} Dimension Z Defines A Zone Where All Body And Lead Irregularities Are Allowed.