

Date:- 6th June 2019

Data Sheet Issue:- 2

Extra Fast Recovery Diode Type F1500NC250

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{RRM}	Repetitive peak reverse voltage, (note 1)	2500	٧
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	2600	V

	OTHER RATINGS (note 6)	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Mean forward current, T _{sink} =55°C, (note 2)	1054	Α
$I_{F(AV)M}$	Mean forward current. T _{sink} =100°C, (note 2)	509	Α
I _{F(AV)M}	Mean forward current. T _{sink} =100°C, (note 3)	295	Α
I _{F(RMS)}	Nominal RMS forward current, T _{sink} =25°C, (note 2)	2090	Α
I _{F(d.c.)}	D.C. forward current, T _{sink} =25°C, (note 4)	1789	Α
I _{FSM}	Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	13.75	kA
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, (note 5)	15.1	Α
I ² t	I^2 t capacity for fusing t_p =10ms, V_{RM} =0.6 V_{RRM} , (note 5)	0.95×10 ⁶	A ² s
l ² t	I^2 t capacity for fusing t_p =10ms, V_{RM} ≤10V, (note 5)	1.14×10 ⁶	A ² s
T _{j op}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_i below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_i initial.
- 6) Current (I_F) ratings have been calculated using V_{T0} and r_T (see page 2)

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{FM} M	Marian and a later and walks as	-	-	2.2	I _{FM} =1500A	V
VFM	Maximum peak forward voltage	-	-	2.55 I _{FM} =2100A		V
V_{T0}	Threshold voltage	-	-	1.372	Current range 1054A 2162A (Note 2)	V
r_{T}	Slope resistance	-	-	0.535	Current range 1054A-3162A (Note 2)	mΩ
V _{T01}	Threshold voltage	-	-	1.51	Current reneral 1500A 4500A	V
r _{T1}	Slope resistance	-	-	0.472	Current range 1500A-4500A	mΩ
\/	Maximum forward recovery voltage	-	-	50	di/dt = 1000A/µs	V
V _{FRM} Maximum	Maximum forward recovery voltage	-	-	35	di/dt = 1000A/μs, T _j =25°C	V
	Peak reverse current	-	-	175	Rated V _{RRM}	mA
I _{RRM}	Peak reverse current	-	-	50	Rated V _{RRM} , T _j =25°C	
Q _{ra}	Recovered charge, 50% Chord	-	800	-	I _{FM} =1500A, t _p =10ms, di/dt=2000A/μs,	μC
t _{rr}	Reverse recovery time	-	1.5	-	V _r =300V, 50% Chord. (note 3)	μs
Q _{ra}	Recovered charge, 50% Chord	-	100	115	I _{FM} =1000A, t _p =1000μs, di/dt=60A/μs,	μC
t _{rr}	Reverse recovery time	-	2.5	-	V _r =50V, 50% Chord	μs
R	Thermal registance, junction to heataink	-	-	0.024	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.048	Single side cooled	I KVVV
F	Mounting force	19	-	26	(Note 4)	kN
W_t	Weight	-	510	-		g

Notes:-

- Unless otherwise indicated T_j=125°C.
 V_{T0} and r_T were used to calculate the current ratings illustrated on page one.
 Figures 3-6 were compiled using these conditions.
 For clamp forces outside these limits, please consult factory.

Notes on Ratings and Characteristics

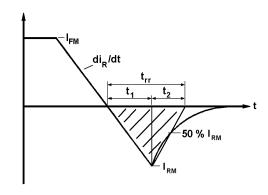
1.0 Voltage Grade Table

Voltage Grade	V _{RRM}	V _{RSM}	V _R dc
	(V)	(V)	(V)
25	2500	2600	1500

2.0 De-rating Factor

A blocking voltage de-rating factor of 0.13% per °C is applicable to this device for T_j below 25°C.

3.0 ABCD Constants


These constants (applicable only over current range of V_F characteristic in Figure 1) are the coefficients of the expression for the forward characteristic given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

where I_F = instantaneous forward current.

4.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{RM} chord as shown in Fig.(a) below.

(ii) Q_{rr} is based on a 150 µs integration time.

l.e.
$$Q_{rr}=\int\limits_{0}^{150\,\mu s}i_{rr}.dt$$
 (iii) $K\ Factor=rac{t_{1}}{t_{2}}$

(iii)
$$K \ Factor = \frac{t_1}{t_2}$$

5.0 Reverse Recovery Loss

The following procedure is recommended for use where it is necessary to include reverse recovery loss.

From waveforms of recovery current obtained from a high frequency shunt (see Note 1) and reverse voltage present during recovery, an instantaneous reverse recovery loss waveform must be constructed. Let the area under this waveform be E joules per pulse. A new sink temperature can then be evaluated from:

$$T_{SINK} = T_{J(MAX)} - E \cdot \left[k + f \cdot R_{th(J-Hs)}\right]$$

Where k = 0.2314 (°C/W)/s

E = Area under reverse loss waveform per pulse in joules (W.s.)

f = Rated frequency in Hz at the original sink temperature.

 $R_{th(J-Hs)} = d.c.$ thermal resistance (°C/W)

The total dissipation is now given by:

$$W_{(tot)} = W_{(original)} + E \cdot f$$

NOTE 1 - Reverse Recovery Loss by Measurement

This device has a low reverse recovered charge and peak reverse recovery current. When measuring the charge, care must be taken to ensure that:

- (a) AC coupled devices such as current transformers are not affected by prior passage of high amplitude forward current.
- (b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal.
- (c) Measurement of reverse recovery waveform should be carried out with an appropriate critically damped snubber, connected across diode anode to cathode. The formula used for the calculation of this snubber is shown below:

$$R^2 = 4 \cdot \frac{V_r}{C_s \cdot \frac{di}{dt}}$$

Where: V_r = Commutating source voltage

C_S = Snubber capacitance R = Snubber resistance

6.0 Computer Modelling Parameters

6.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_o + \sqrt{V_o^2 + 4 \cdot ff^2 \cdot r_s \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_s}$$

Where $V_{T0} = 1.51V$, $r_T = 0.472m\Omega$

ff = form factor (normally unity for fast diode applications)

$$W_{AV} = \frac{\Delta T}{R_{th}}$$
$$\Delta T = T_{j(MAX)} - T_{Hs}$$

6.2 Calculation of V_F using ABCD Coefficients

The forward characteristic I_F Vs V_F, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, and D forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given in this report for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients	125°C Coefficients
Α	0.5741159	0.4092189
В	0.1250568	0.05448688
С	2.34×10 ⁻⁴	1.70004×10 ⁻⁴
D	0.01697621	0.02981361

Curves

Figure 1 – Forward characteristics of Limit device

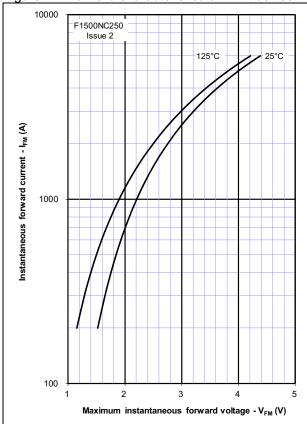
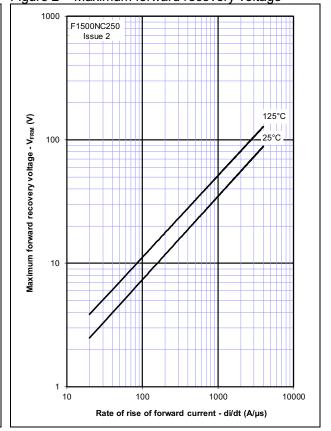



Figure 2 – Maximum forward recovery voltage

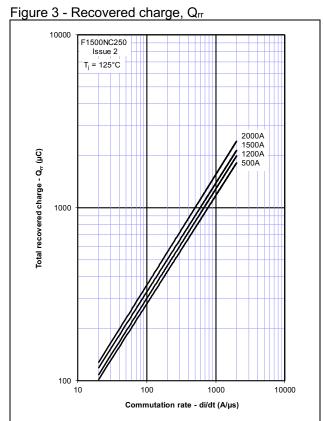
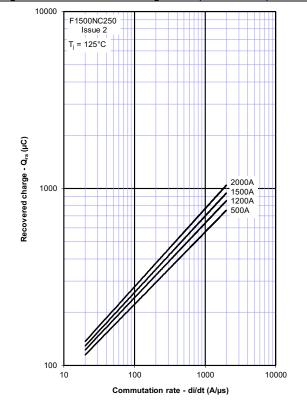



Figure 4 - Recovered charge, Qra (50% chord)

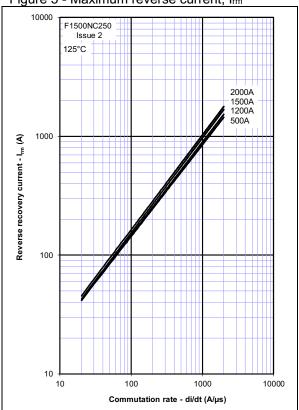


Figure 6 - Maximum recovery time, t_{rr} (50% chord)

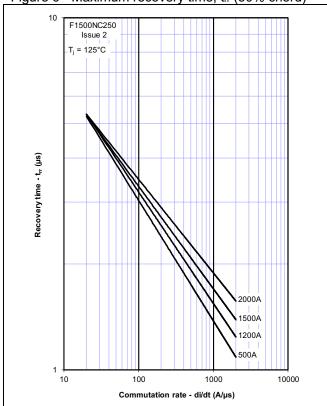


Figure 7 – Reverse recovery energy per pulse

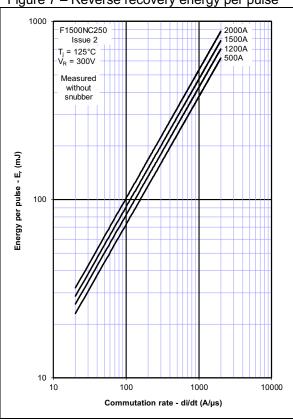


Figure 8 - Sine wave energy per pulse

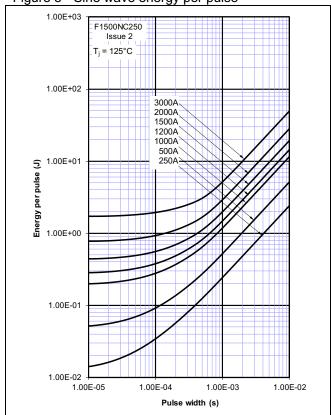


Figure 9 - Sine wave frequency vs. pulse width

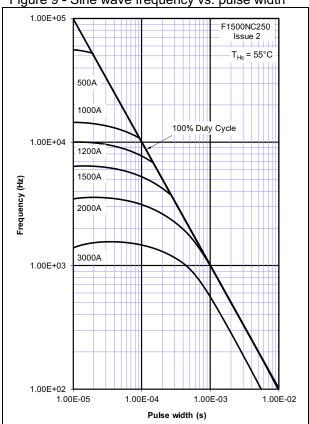


Figure 10 - Sine wave frequency vs. pulse width

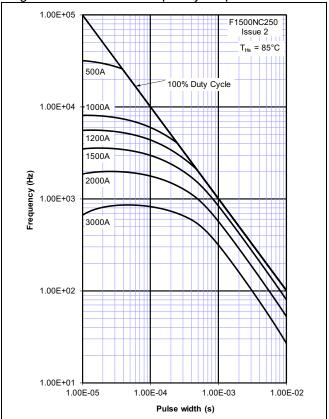


Figure 11 - Square wave energy per pulse

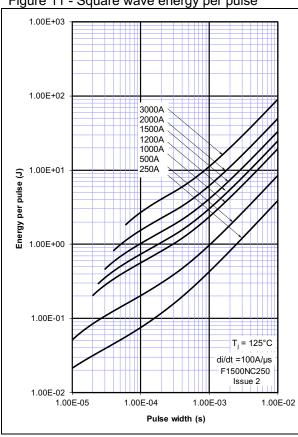


Figure 12 - Square wave energy per pulse

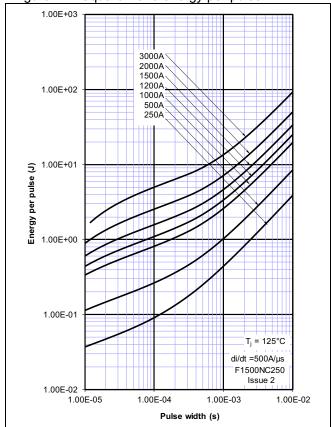


Figure 13 - Square wave frequency vs pulse width

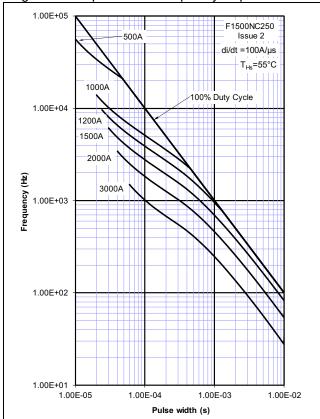


Figure 14 - Square wave frequency vs pulse width

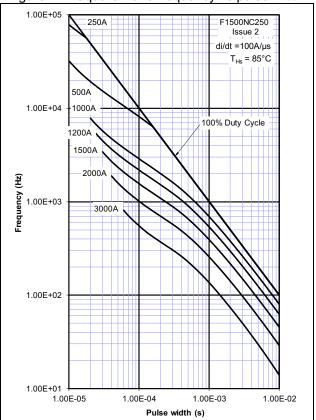


Figure 15 - Square wave frequency vs pulse width

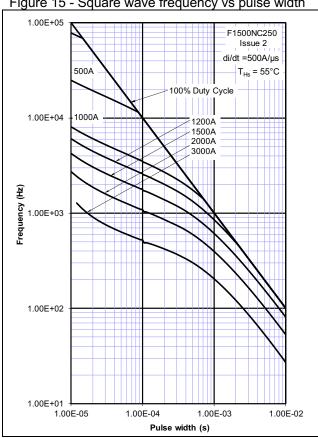


Figure 16 - Square wave frequency vs pulse width

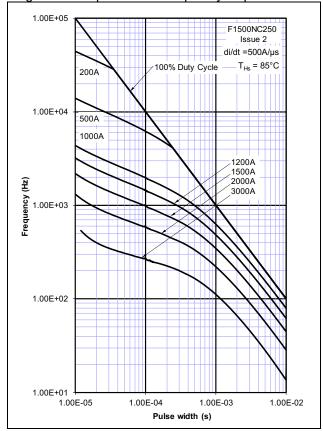
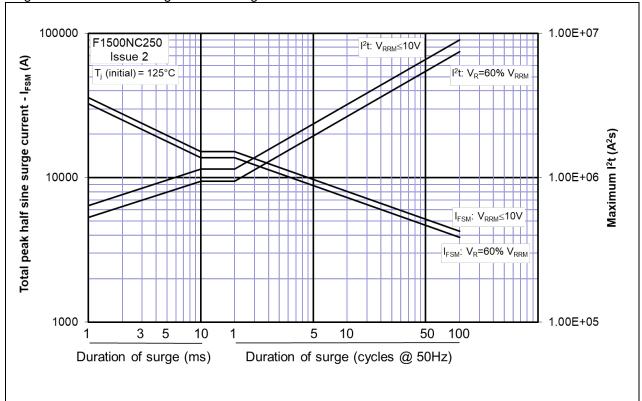
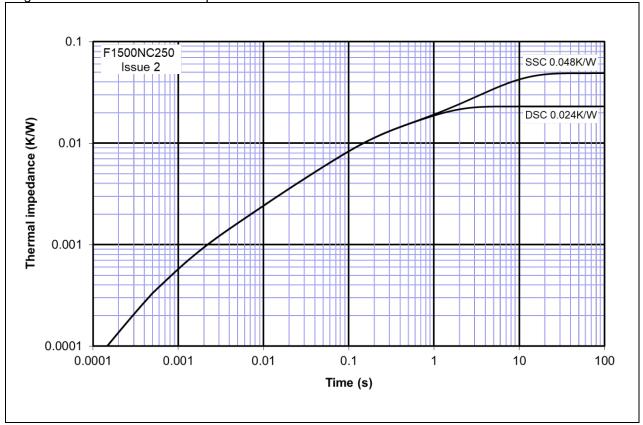
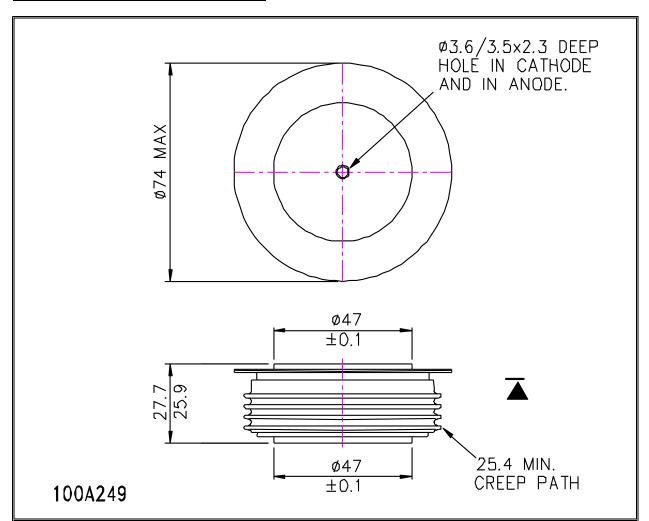




Figure 17 – Maximum surge and I²t ratings



Outline Drawing & Ordering Information

ORDERING INFORMATION		(Please quote 10 digit code as below)		
F1500	NC	25	0	
Fixed Type Code	Fixed outline code	Fixed Voltage code V _{RRM} /100 25	Fixed code	

Order code: F1500NC250 - 2500V V_{RRM}, 27.7mm clamp height capsule.

IXYS Semiconductor GmbH

Edisonstraße 15 D-68623 Lampertheim Tel: +49 6206 503-0 Fax: +49 6206 503-627

IXYS Corporation

1590 Buckeye Drive Milpitas CA 95035-7418 Tel: +1 (408) 547 9000 Fax: +1 (408) 496 0670 E-mail: sales@ixys.net

www.littelfuse.com

www.westcode.com

www.ixys.com

IXYS UK Westcode Ltd

Langley Park Way, Langley Park, Chippenham, Wiltshire, SN15 1GE. Tel: +44 (0)1249 444524 E-mail: sales@ixysuk.com

IXYS Long Beach, Inc

IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach CĂ 90815

Tel: +1 (562) 296 6584 Fax: +1 (562) 296 6585

© Westcode Semiconductors Ltd.

E-mail: service@ixyslongbeach.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

