

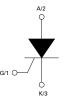
S602ECS

Main Features

Symbol	Value	Unit
I _{T(RMS)}	1.5	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	100	μА

Applications

The S602ECS is specifically designed for Gas Ignition applications that require high pulse surge current capability.


Description

This new 1.5 A sensitive gate SCR in an TO-92 package with a G-A-K pin out, offers a high static component series with a high static dv/dt and a low turn off (tq) time by the use of small die planar construction implementation.

Features

- Surge capability >15Amps
- High dv/dt noise immunity
- Improved turn-off time (t_q) ≤ 35 µsec.
- TO-92 G-A-K pinout
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave)	T _C = 65°C		1.5	А
I _{T(AV)}	Average on-state current	T _c =	65°C	0.95	А
	Non repetitive surge peak on-state current (Single cycle, T_J initial = 25°C)		F = 50 Hz	14.0	Δ
I _{TSM}			F = 60 Hz	16.8	А
2 _†	I²t Value for fusing	t _p = 10 ms	F = 50 Hz	0.78	A ² s
I-t		$t_p = 8.3 \text{ ms}$	F = 60 Hz	0.93	A-5
di/dt	Critical rate of rise of on-state current IG = 10mA		T _J = 125°C	50	A/µs
I _{GM}	Peak gate current	t _p = 10 μs	T _J = 125°C	1.0	А
P _{G(AV)}	Average gate power dissipation $T_{_{\rm J}} = 125^{\circ}{\rm C}$		0.1	W	
T _{stg}	Storage junction temperature range		-40 to 150	°C	
T	Operating junction temperature range		-40 to 125	°C	

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Cumphal	Description	Test Conditions	S602ECS		Unit
Symbol	Description	lest Conditions	Min	Max	Onit
I _{GT}	DC Gate Trigger Current	V _D = 12V	20	100	μΑ
V _{GT}	DC Gate Trigger Voltage	$R_L = 60 \Omega$	_	0.8	V
V_{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	5	_	V
I _H	Holding Current	$R_{GK} = 1 k\Omega$	_	3	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125^{\circ}\text{C}$ $V_D = V_{DRM} / V_{RRM}$ Exponential Waveform $R_{GK} = 1 \text{ k}\Omega$	50	_	V/µs
t _q	Turn-Off Time	$T_J = 125^{\circ}C @ 600 V$ $R_{GK} = 1 k\Omega$	_	35	μs
t _{gt}	Turn-On Time	$I_{\rm G} = 10$ mA PW = 15 μ sec $I_{\rm T} = 3.0$ A (pk)	_	3	μs

Static Characteristics (T_J = 25°C, unless otherwise specified)

Cumbal	Decemention	Total Complisions	Value		I I mit
Symbol	Description	Test Conditions	Min	Max	Unit
V _{TM}	Peak On-State Voltage	I _{TM} = 4A (pk)	_	1.8	V
Off Coasts Coursest Deals December	Off State Current Book Popotitive	$T_J = 25^{\circ}\text{C} @V_D = V_{DRM}$ $R_{GK} = 1 \text{ k}\Omega$	_	5	μΑ
I _{DRM}	I _{DRM} Off-State Current, Peak Repetitive	$T_J = 125^{\circ}C @V_D = V_{DRM}$ $R_{GK} = 1 k\Omega$	_	500	μΑ

Thermal Resistances

Symbol	Parameter		Value	Unit
$R_{\theta(JC)}$	Junction to case (AC)	$I_{\tau} = 1.5A_{(RMS)}$, 60Hz AC resistive load	50	°C/W
$R_{\theta(J-A)}$	Junction to ambient	I _T = 1.5A _(RMS) , 60Hz AC resistive load condition, 100% conduction.	160	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

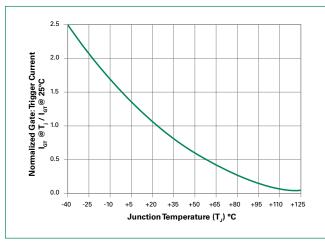


Figure 2: Normalized DC Holding Current vs. Junction Temperature

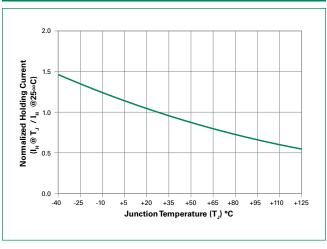


Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

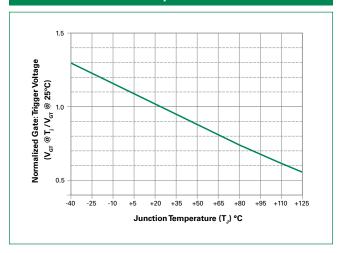


Figure 4: On-State Current vs. On-State Voltage (Typical)

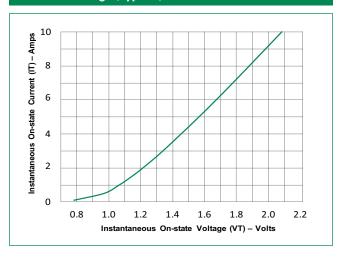


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

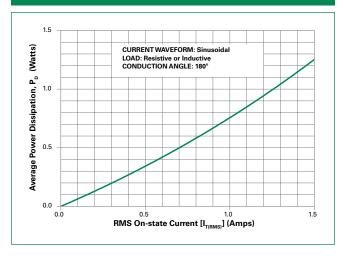


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

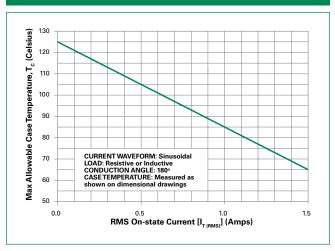
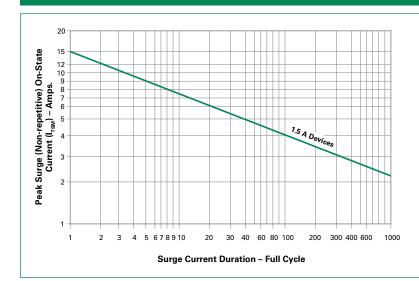



Figure 6: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

RMS On-State Current $[I_{T(RMS)}]$: Max Rated Value at Specific Case Temperature

Notes:

Gate control may be lost during and immediately

following surge current interval.

2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 7: Typical DC Gate Trigger Current with $R_{\rm GK}$ vs. Junction Temperature

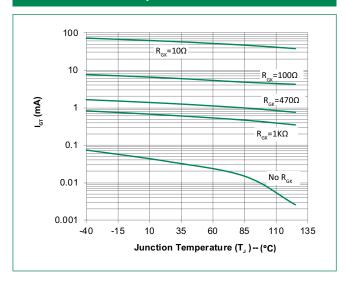


Figure 8: Typical DC Holding Current with \mathbf{R}_{GK} vs. Junction Temperature

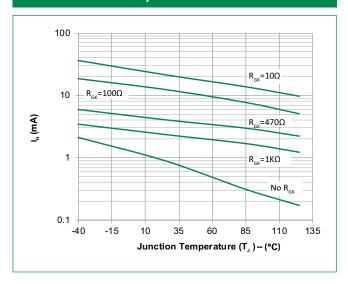
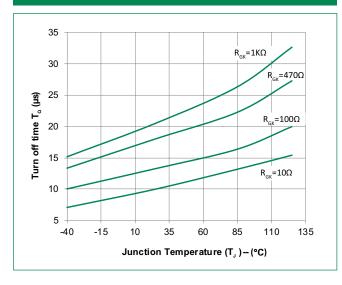
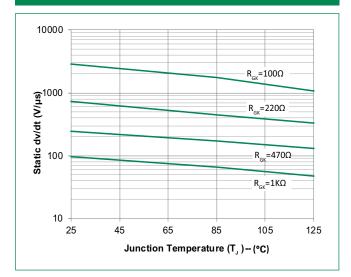
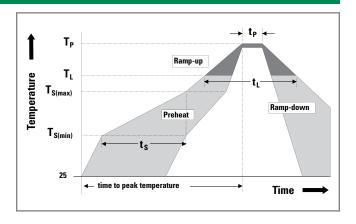


Figure 9: Typical turn off time with R_{GK} vs. Junction Temperature


Figure 10: Typical Static dv/dt with RGK vs. Junction Temperature

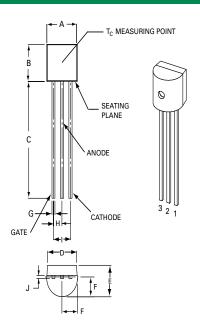
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
D-fl	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemperature (T _P)		260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exceed		280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated.	
Body Material	UL Recognized compound meeting flammability rating V-0.	
Lead Material	Copper Alloy	

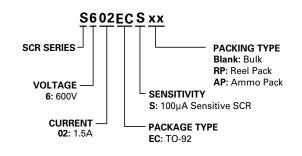
Design Considerations


Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

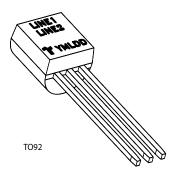
Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Dimensions

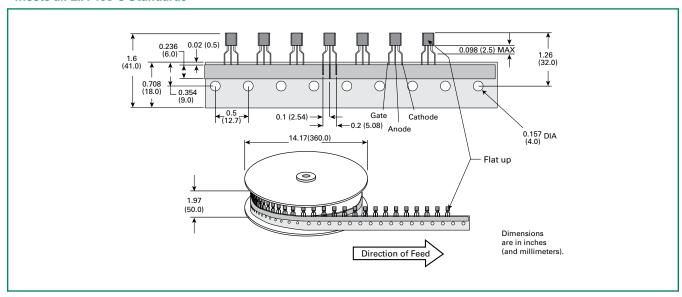


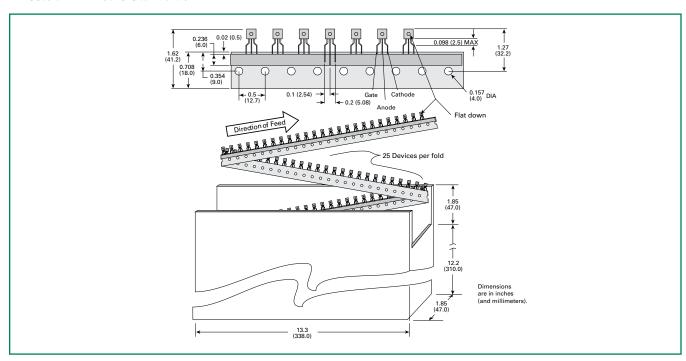
Dimensions	Inches		Millimeters	
Dimensions	Min	Max	Min	Max
А	0.175	0.205	4.450	5.200
В	0.170	0.210	4.320	5.330
С	0.500	_	12.700	_
D	0.135	_	3.430	_
Е	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
Н	0.045	0.055	1.150	1.390
Ī	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S602ECS	S602ECS	0.170 g	Bulk	2500
S602ECSAP	S602ECS	0.170 g	Ammo Pack	2000
S602ECSRP	S602ECS	0.170 g	Tape & Reel	2000

Part Numbering System


Part Marking System


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

