GenX3 ${ }^{\text {TM }} 1200 \mathrm{~V}$ IGBTs

High Speed Low Vsat PT IGBTs for 3-20 kHz Switching

IXGK120N120B3 IXGX120N120B3

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1200	V
$\mathrm{V}_{\text {CGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1200	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (Chip Capability)	200	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	120	A
$\mathrm{I}_{\text {Lrms }}$	Terminal Current Limit	120	A
I_{CM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	370	A
SSOA	$\mathrm{V}_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega$	$\mathrm{I}_{\text {CM }}=240$	A
(RBSOA)	Clamped Inductive Load	$\mathrm{V}_{\text {CES }} \leq 1200$	V
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	830	W
TJ		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOLD }}$	1.6 mm (0.062 in.) from Case for 10	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting Torque (IXGK)	1.13/10	Nm/lb.in.
F_{c}	Mounting Force (IXGX)	20..120/4.5.. 27	N / lb.
Weight	TO-264	10	g
	PLUS247	6	g

PLUS 247 ${ }^{\text {TM }}$ (IXGX)

$\mathrm{G}=$ Gate $\quad \mathrm{E} \quad=$ Emitter
C = Collector \quad TAB $=$ Collector

Features

- Optimized for Low Conduction and Switching Losses
- Square RBSOA
- International Standard Packages

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

IXGK120N120B3 IXGX120N120B3

Note

1. Pulse Test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, Duty Cycle, $\mathrm{d} \leq 2 \%$.
2. Switching Times may Increase for V_{CE} (Clamp) $>0.8 \mathrm{~V}_{\mathrm{CES}}$, Higher T_{J} or Increased R_{G}.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

