Fast Recovery Epitaxial Diode (FRED)

Part number

DSEI2x161-06P

Features / Advantages:

- 2 independent FRED in 1 package
- Planar passivated chips
- Very short recovery time
- Leads suitable for PC board soldering
- Very short recovery time
- Soft recovery behaviour
- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling capability
- Low noise switching
- Small and light weight

Applications:

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

$$
\begin{aligned}
\mathrm{I}_{\mathrm{FAVM}} & =2 \mathrm{x} 147 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{RRM}} & =600 \mathrm{~V} \\
\mathrm{t}_{\mathrm{rr}} & =35 \mathrm{~ns}
\end{aligned}
$$

Package: ECO-PAC2

- Isolation voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

(1) $\mathrm{I}_{\text {FAVM }}$ rating includes reverse blocking losses at $\mathrm{T}_{\text {VJM }}, \mathrm{V}_{\mathrm{R}}=0.8 \mathrm{~V}_{\text {RRM }}$, duty cycle $\mathrm{d}=0.5$
preliminary data

Package	ECO-PAC2				Ratings			
Symbol	Definitions	Conditions			min.	typ.	max.	
$\mathrm{I}_{\text {RMS }}$	RMS current	per terminal					100	A
$\begin{aligned} & \mathrm{T}_{\mathrm{vv}} \\ & \mathrm{~T}_{\mathrm{op}} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$	virtual junction temperature operation temperature storage temperature				$\begin{aligned} & -40 \\ & -40 \\ & -40 \end{aligned}$		$\begin{aligned} & 150 \\ & 125 \\ & 125 \end{aligned}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
Weight						24		g
M_{D}	mounting torque				1.4		2.0	Nm
$\begin{aligned} & \mathbf{d}_{\text {spp/App }} \\ & \mathbf{d}_{\mathrm{spb} / \mathrm{Apb}} \end{aligned}$	creepage distance on surface \| striking distance through air			terminal to terminal terminal to backside	$\begin{array}{r} 6.0 \\ 10.0 \end{array}$			mm
$\mathrm{V}_{\text {ISOL }}$	isolation voltage	$\begin{aligned} & t=1 \text { second } \\ & t=1 \text { minute } \end{aligned}$	$50 / 60 \mathrm{~Hz}$, R	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA}$	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$			V

