Integrated Circuits Division

Parameter	Rating	Units
LED Operating Range	$2-10$	mA
K3, Transfer Gain	$0.773-1.072$	-
Isolation, Input to Output	3750	$\mathrm{~V}_{\text {rms }}$

Features

- 0.01\% Servo Linearity
- THD -87dB Typical
- Wide Bandwidth (>200kHz)
- Couples Analog and Digital Signals
- High Gain Stability
- Low Input/Output Capacitance
- Low Power Consumption
- 16-Pin SOIC Package (PCMCIA Compatible)
- Machine Insertable, Wave Solderable
- Surface Mount Tape \& Reel Version Available

Applications

- Modem Transformer Replacement With No Insertion Loss
- Digital Telephone Isolation
- Power Supply Feedback Voltage/Current
- Medical Sensor Isolation
- Audio Signal Interfacing
- Isolation of Process Control Transducers

Description

The LOC211P Dual Linear Optocoupler features an infrared LED optically coupled with two photodiodes. A feedback (input) photodiode is used to generate a control signal that provides a servomechanism to the LED drive current, thus compensating for the LED's nonlinear time and temperature characteristics. The other (output) photodiode provides an output signal that is linear with respect to the servo LED current. The product features wide bandwidth, high input to output isolation, and excellent servo linearity.

Approvals

- UL Recognized Component: File \# E76270
- CSA Certified Component: Certificate \# 1175739
- EN/IEC 60950-1 Certified Component: TUV Certificate \# B 131282667003

Ordering Information

Part \#	Description
LOC211P	16-Pin SOIC (50/tube)
LOC211PTR	16-Pin SOIC (1000/Reel)

K3 Sorted Bins

Bin	K3 Range
Bin 1	$0.773-0.886$
Bin 2	$0.887-1.072$

Bin Matrix

	Top Pole Optocoupler*	Bottom Pole Optocoupler**
Suffix	Bin	
K	1	1
L	1	2
M	2	1
N	2	2

*Top Optocoupler: Pins 1,2,3,4,13, and 14
**Bottom Optocoupler: Pins 7 through 12

Part Number Information

The LOC211P is shipped in anti-static tubes (50 pieces each) or tape/reel (1,000 pieces each). Each container has only 1 bin combination which will be branded on each part with the appropriate bin letter $\mathrm{K}, \mathrm{L}, \mathrm{M}$, or N in the lower right hand corner. Suffix representation is described in the "Bin Matrix".
e3

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Reverse LED Voltage	5	V
Input Control Current Peak (10ms)	100	mA
	1	A
Input Power Dissipation ${ }^{1}$	150	mW
Power Dissipation Total Package Dissipation		
Isolation Voltage, Input to Output	800	mW
Operational Temperature	-40 to +85	$\mathrm{~V}_{\text {ms }}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Input Characteristics						
LED Voltage Drop	$\mathrm{I}_{\mathrm{F}}=2-10 \mathrm{~mA}$	$V_{\text {F }}$	0.9	1.2	1.4	V
Reverse LED Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$
Coupler/Detector Characteristics						
Dark Current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C} 1-\mathrm{A} 1}=\mathrm{V}_{\mathrm{CL} 2-\mathrm{A} 2}=15 \mathrm{~V}$	D	-	1	25	nA
K1, Servo Gain ($\left.\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{F}}\right)$	$\mathrm{I}_{\mathrm{F}}=2-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C} 1-\mathrm{A} 1}=\mathrm{V}_{\mathrm{C} 2-\mathrm{A} 2}=15 \mathrm{~V}$	K1	0.008	-	0.030	-
K2, Forward Gain ($\mathrm{I}_{\mathrm{C} 2} / \mathrm{I}_{\mathrm{F}}$)		K2	0.006	-	0.030	-
K3, Transfer Gain (K2/K1=1 $\mathrm{C}^{\text {c }} / \mathrm{Cl}_{\mathrm{C} 1}$)		K3	0.773	-	1.072	-
UK3, Transfer Gain Linearity (non-servoed)	$\mathrm{I}_{\mathrm{F}}=2-10 \mathrm{~mA}$	$\Delta \mathrm{K} 3$	-	-	1	\%
K3 Temperature Coefficient	$\mathrm{I}_{\mathrm{F}}=2-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C} 1-\mathrm{A} 1}=\mathrm{V}_{\mathrm{C} 2-\mathrm{A} 2}=5 \mathrm{~V}$	$\Delta \mathrm{K} 3 / \Delta \mathrm{T}$	-	0.005	-	\%/C
Common Mode Rejection Ratio	$\mathrm{V}=20 \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{~Hz}$	CMRR	-	130	-	dB
Total Harmonic Distortion	$\mathrm{f}_{0}=350 \mathrm{~Hz}, 0 \mathrm{dBm}$	THD	-96	-87	-80	dB
Frequency Response ${ }^{2}$	Photoconductive Configuration	$\mathrm{f}_{-3 \mathrm{BB}}$	-	200	-	kHz
	Photovoltaic Configuration		-	40	-	kHz
Common Characteristics						
Input/Output Capacitance	\square -	C_{10}	-	3	-	pF

[^0]PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Manufacturing Information

Moisture Sensitivity

(8)
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
LOC211P	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
LOC211P	$260^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.
(e3)

Mechanical Dimensions

LOC211P

LOC211PTR Tape \& Reel

For additional information please visit our website at: https://www.ixysic.com

[^1]
[^0]: ${ }^{1}$ All parameters above are for each optocoupler.
 ${ }^{2}$ See Application Note, AN-107, for LOC211P configurations.

[^1]: Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.
 Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

