SMF Series
Surface Mount – 200W

Description
The SMF series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events. SMF package is 50% smaller in footprint when compare to SMA package and delivering one of the low height profiles (1.1mm) in the industry.

Features & Benefits
- 200W peak pulsepower capability at 10/1000µs waveform, repetition rate (duty cycle): 0.01%
- Compatible with industrial standard package SOD-123FL
- Low profile: maximum height of 1.1mm.
- Low inductance, excellent clamping capability
- For surface mounted applications to optimize board space
- High temperature to reflow soldering guaranteed: 260°C/30sec
- Typical failure mode is short from over-specified voltage or current
- Whisker test is conducted based on JEDEC JESD201A per its table 4a and 4c
- IEC-61000-4-2 ESD 30kV (Air), 30kV (Contact)
- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Fast response time: typically less than 1.0ns from 0 Volts to VBR min
- Glass passivated junction
- Built-in strain relief
- Plastic package is flammability rated V-0 per UL 94
- Meet MSL level1, per J-STD-020, LF maximum peak of 260°C
- Matte tin lead-free plated
- Halogen-free and RoHS compliant
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tinSn (IPC/ JEDEC J-STD-609A.01)
- UL Recognized to UL 497B as an Isolated Loop Circuit Protector.

Maximum Ratings and Thermal Characteristics
(Ta=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Pulse Power Dissipation</td>
<td>P_{PPM}</td>
<td>1000</td>
<td>W</td>
</tr>
<tr>
<td>at T_a=25°C</td>
<td>8/20µs</td>
<td>200</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>10/1000µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation On Infinite Heat Sink at T_L=50°C</td>
<td>P_{D}</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance Junction-to-Ambient</td>
<td>R_{BJA}</td>
<td>220</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance Junction-to-Lead</td>
<td>R_{JL}</td>
<td>100</td>
<td>°C/W</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_J</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{STG}</td>
<td>-65 to 175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. Non-repetitive current pulse, per Fig. 4 and derated above T_{j_initial}=25°C per Fig. 3.
2. SMF90A-SMF100A: Peak Pulse Power Dissipation is 170W min, 200W typical @ 10/1000µs

Applications
SMF series is ideal for the protection of I/O interfaces, V_{CC}, bus and other vulnerable circuit used in cellular phones, portable electronics, business machines, power supplies and other consumer applications.

Agency Approvals

Agency	Agency File Number
UL | E230531

Agency Agnecy File Number

Functional Diagram

Bi-directional

Uni-directional

Cathode

Anode
SMF Series
Surface Mount – 200W

Electrical Characteristics (T_A=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking Code</th>
<th>Breakdown Voltage VBR (Volts) @ IT</th>
<th>Test Current IT (mA)</th>
<th>Reverse Stand off Voltage VR (V)</th>
<th>Maximum Reverse Leakage @ VR IR (µA)</th>
<th>Maximum Peak Pulse Current @ipp A (10*1000us)</th>
<th>Maximum Clamping Voltage @ipp VC (V)</th>
<th>Agency Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMF5.0A</td>
<td>SMF5.0CA</td>
<td>5.0</td>
<td>2.5</td>
<td>100</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>X X</td>
</tr>
<tr>
<td>SMF6.0A</td>
<td>SMF6.0CA</td>
<td>6.0</td>
<td>2.5</td>
<td>100</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>X X</td>
</tr>
<tr>
<td>SMF6.5A</td>
<td>SMF6.5CA</td>
<td>6.5</td>
<td>2.5</td>
<td>100</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>X X</td>
</tr>
<tr>
<td>SMF7.0A</td>
<td>SMF7.0CA</td>
<td>7.0</td>
<td>2.5</td>
<td>100</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>X X</td>
</tr>
</tbody>
</table>

Notes:
1. V_B measured after IT applied for 300µs, I_{PP} = square wave pulse or equivalent.
2. Surge current waveform per 10/1000µs exponential wave and derated per Fig. 2.
3. All terms and symbols are consistent with ANSI/IEEE C62.35.
4. For bidirectional type having VR of 10 volts and less, the IR limit is double.
SMF Series
Surface Mount – 200W

I-V Curve Characteristics

- **Uni-directional**
- **Bi-directional**

Figure 1: TVS Transients Clamping Waveform

Figure 2: Peak Pulse Power Rating Curve

Ratings and Characteristic Curves *(T_a=25°C unless otherwise noted)*

- **P_{PPM}** Peak Pulse Power Dissipation – Max power dissipation
- **V_R** Stand-off Voltage – Maximum voltage that can be applied to the TVS without operation
- **V_{BR}** Breakdown Voltage – Maximum voltage that flows though the TVS at a specified test current (I_T)
- **V_C** Clamping Voltage – Peak voltage measured across the TVS at a specified I_{ppm} (peak impulse current)
- **I_R** Reverse Leakage Current – Current measured at V_R
- **V_F** Forward Voltage Drop for Uni-directional
SMF Series
Surface Mount – 200W

Ratings and Characteristic Curves (T_A=25°C unless otherwise noted) (Continued)

Figure 3: Peak Pulse Power Derating Curve

Figure 4: Pulse Waveform - 10/1000µS

Figure 5: Forward Voltage

Figure 6: Typical Junction Capacitance

Figure 7: Peak Forward Voltage Drop vs. Peak Forward Current

Figure 8: Maximum Non-Repetitive Forward Surge Current
Uni-Directional Only
SMF Series
Surface Mount – 200W

Soldering Parameters

Reflow Condition
- Temperature Min (Tmin)
- Temperature Max (Tmax)
- Time (min to max) (t)

Pre Heat
- Temperature Max (Tmax)
- Time (min to max) (t)

Average ramp up rate (Liquidus Temp (Tl) to peak
Tmax to Tl - Ramp-up Rate

Ramp-down Rate

Time 25°C to peak Temperature (TP)
Do not exceed

Specifications

Physical Specifications
Case
SOD-123FL plastic over glass passivated junction
Polarity
Color band denotes cathode except bipolar
Terminal
Matte tin-plated leads, solderable per JESD22-B102

Environmental Specifications
High Temp. Storage
JESD22-A103
HTRB
JESD22-A108
Temperature Cycling
JESD22-A104
MSL
JEDEC-J-STD-020, Level 1
H3TRB
JESD22-A101
RSH
JESD22-A111

Dimensions - SOD-123FL Package

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.50 - 3.10</td>
<td>0.0984 - 0.1220</td>
</tr>
<tr>
<td>B</td>
<td>3.40 - 3.90</td>
<td>0.1339 - 0.1535</td>
</tr>
<tr>
<td>C</td>
<td>0.70 - 1.20</td>
<td>0.0275 - 0.0472</td>
</tr>
<tr>
<td>D</td>
<td>1.50 - 2.00</td>
<td>0.0591 - 0.0787</td>
</tr>
<tr>
<td>E</td>
<td>0.35 - 0.90</td>
<td>0.0138 - 0.0354</td>
</tr>
<tr>
<td>F</td>
<td>0.05 - 0.26</td>
<td>0.0020 - 0.0102</td>
</tr>
<tr>
<td>G</td>
<td>0.00 - 0.10</td>
<td>0.000 - 0.0039</td>
</tr>
<tr>
<td>H</td>
<td>0.90 - 1.10</td>
<td>0.0354 - 0.0433</td>
</tr>
<tr>
<td>I</td>
<td>0.00 - 0.20</td>
<td>0.000 - 0.008</td>
</tr>
<tr>
<td>J</td>
<td>0.40 - 0.60</td>
<td>0.016 - 0.024</td>
</tr>
</tbody>
</table>
Part Numbering System

SMF xx C A

5% \(V_{br} \) Voltage Tolerance
Bi-directional
\(V_{br} \) Voltage

Part Marking System

Cathode Band
(for uni-directional products only)

Marking Code
Y: Year Code
M: Month Code
X: Plant Code

Trace Code Marking

Packaging Options

<table>
<thead>
<tr>
<th>Part number</th>
<th>Component Package</th>
<th>Quantity</th>
<th>Packaging Option</th>
<th>Packaging Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMFXXX</td>
<td>SOD-123FL</td>
<td>3000</td>
<td>Tape & Reel – 8mm tape/7” reel</td>
<td>EIA RS-481</td>
</tr>
<tr>
<td>SMFXXX-T13</td>
<td>SOD-123FL</td>
<td>10000</td>
<td>Tape & Reel – 8mm tape/13” reel</td>
<td>EIA RS-481</td>
</tr>
</tbody>
</table>

Tape and Reel Specification

Dimensions are in inches (and millimeters).

Arbor Hole Dia.: 0.80 (20.2)

0.31 (8.0)

0.157 (4.0)

0.33 (8.5)

7.0 (178)

Cover tape

Direction of Feed

Cathode

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

© 2023 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: JC. 11/02/23