

Data Sheet Issue:- 3

Extra Fast Recovery Diode Types F1300N#45P to F1300N#55P

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{RRM}	Repetitive peak reverse voltage, (note 1)	4500-5500	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	4600-5600	V
V _{R(d.c.)}	Maximum reverse d.c. voltage (note 1)	2300-2800	V

	OTHER RATINGS (note 6)	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Mean forward current, T _{sink} =55°C, (note 2)	1346	А
I _{F(AV)M}	Mean forward current. T _{sink} =100°C, (note 2)	767	А
I _{F(AV)M}	Mean forward current. T _{sink} =100°C, (note 3)	435	А
I _{F(RMS)}	Nominal RMS forward current, T _{sink} =25°C, (note 2)	2615	А
I _{F(d.c.)}	D.C. forward current, T _{sink} =25°C, (note 4)	2130	А
I _{FSM}	Peak non-repetitive surge t_p =10ms, V_{RM} =60% V_{RRM} , (note 5)	20.8	kA
I _{FSM2}	Peak non-repetitive surge t_p =10ms, $V_{RM} \le 10V$, (note 5)	22.9	kA
l²t	I^2t capacity for fusing t_p =10ms, V_{RM} =60% $V_{RRM},$ (note 5)	2.16×10 ⁶	A ² s
l²t	$I^{2}t$ capacity for fusing $t_{p}\text{=}10\text{ms},V_{\text{RM}}{\leq}10\text{V},(\text{note 5})$	2.62×10 ⁶	A ² s
T _{j op}	Operating temperature range	-40 to +140	°C
T _{stg}	Storage temperature range	-40 to +140	°C

Notes:-

1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.

2) Double side cooled, single phase; 50Hz, 180° half-sinewave.

3) Single side cooled, single phase; 50Hz, 180° half-sinewave.

- 4) Double side cooled.
- 5) Half-sinewave, 140°C T_j initial.

6) Current (I_F) ratings have been calculated using V_{T0} and r_T (see page 2)

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V_{FM}	Maximum peak forward voltage	-	-	1.75	I _{FM} = 800A	V
		-	-	1.95	I _{FM} = 1200A	
V _{T0}	Threshold voltage	-	-	1.569		V
r _⊤	Slope resistance	-	-	0.318	Over current range 1346 –4038A (Note 2)	mΩ
V _{T01}	Threshold voltage	-	-	1.539		V
r _{T1}	Slope resistance	-	-	0.332	Over current range 1200 – 3600A	mΩ
V		-	-	120	di/dt = 1000A/µs, 25°C	
V _{FRM}	Maximum forward recovery voltage	-	-	230	di/dt = 1000A/µs	V
I _{RRM} Peak rev		-	-	40	Rated V _{RRM} Rated V _{RRM} , Tj=25°C	mA
	Peak reverse current	-	-	10		
Q _{rr}	Recovered charge	-	2150	-		μC
Q _{ra}	Recovered charge, 50% Chord	-	1010	1300	I _{FM} =1000A, t _p =1000μs, di/dt=200A/μs, V _r =100V, 50% Chord (note 3)	μC
Irm	Reverse recovery current	-	470	-		А
t _{rr}	Reverse recovery time, 50% Chord	-	4.3	-		μs
Qrr	Recovered charge	-	4680	-		μC
Q _{ra}	Recovered charge, 50% Chord	-	3680	4100	I _{FM} =1200A, t _p =1000μs, di/dt=200A/μs, V _r =1500V, with 4.5Ω, 1μF snubber	μC
l _{rm}	Reverse recovery current	-	560	-	(Note 3)	А
t _{rr}	Reverse recovery time, 50% Chord	-	15	-		μs
R _{thJK}	Thermal resistance, junction to heatsink (note 4)	-	-	0.024	Double side cooled	K/W
		-	-	0.048	Anode side cooled	
F	Mounting force	19	-	26	(Note 4)	kN
W _t	Weight	-	510	-		g

Notes:-

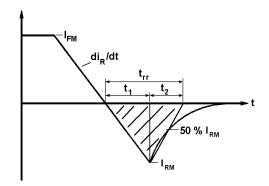
- Unless otherwise indicated T_j=140°C.
 V_{T0} and r_T were used to calculate the current ratings illustrated on page one.
 Figures 3-7 were compiled using these conditions.
 For clamp forces outside these limits, please consult factory.

Notes on Ratings and Characteristics

1.0 De-rating Factor

A blocking voltage de-rating factor of 0.13% per °C is applicable to this device for T_j below 25°C.

2.0 ABCD Constants


These constants (applicable only over current range of V_F characteristic in Figure 1) are the coefficients of the expression for the forward characteristic given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

where I_F = instantaneous forward current.

3.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Figure below.

1

(ii) Q_{rr} is based on a 150 μs integration time.

I.e.
$$Q_{rr} = \int_{0}^{150 \,\mu s} i_{rr} dt$$

(iii)
$$K Factor = \frac{t_1}{t_2}$$

4.0 Reverse Recovery Loss

The following procedure is recommended for use where it is necessary to include reverse recovery loss.

From waveforms of recovery current obtained from a high frequency shunt (see Note 1) and reverse voltage present during recovery, an instantaneous reverse recovery loss waveform must be constructed. Let the area under this waveform be E joules per pulse. A new sink temperature can then be evaluated from:

$$T_{SINK} = T_{J(MAX)} - E \cdot \left[k + f \cdot R_{thJK}\right]$$

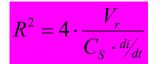
Where k = 0.2314 (°C/W)/s

- E = Area under reverse loss waveform per pulse in joules (W.s.)
- f = Rated frequency in Hz at the original sink temperature.

 $R_{th(J-Hs)} = d.c.$ thermal resistance (°C/W)

The total dissipation is now given by:

$$W_{(tot)} = W_{(original)} + E \cdot f$$


NOTE 1 - Reverse Recovery Loss by Measurement

This device has a low reverse recovered charge and peak reverse recovery current. When measuring the charge, care must be taken to ensure that:

(a) AC coupled devices such as current transformers are not affected by prior passage of high amplitude forward current.

(b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal.

(c) Measurement of reverse recovery waveform should be carried out with an appropriate critically damped snubber, connected across diode anode to cathode. The formula used for the calculation of this snubber is shown below:

Where: V_r = Commutating source voltage C_s = Snubber capacitance R = Snubber resistance

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^{2} + 4 \cdot ff^{2} \cdot r_{T} \cdot W_{AV}}}{2 \cdot ff^{2} \cdot r_{T}}$$

Where V_{T0} = 1.569V, r_T = 0.318m Ω

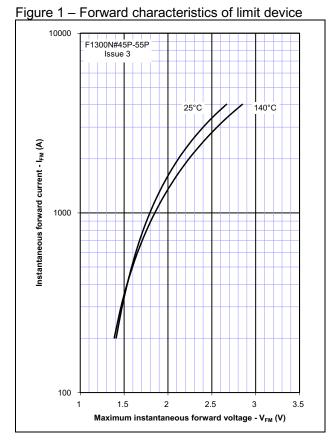
ff = form factor (normally unity for fast diode applications)

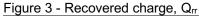
$$W_{AV} = \frac{\Delta T}{R_{th}}$$
$$\Delta T = T_{j(MAX)} - T_K$$

5.2 Calculation of VF using ABCD Coefficients

The forward characteristic IF Vs VF, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, and D forming the coefficients of the representative equation for V_F in terms of I_F given below:


$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$


The constants, derived by curve fitting software, are given in this report for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients	140°C Coefficients
А	0.9457614	1.1329943
В	0.0566287	-0.02170949
С	1.66939×10⁻⁴	7.78189×10 ⁻⁵
D	9.156351×10 ⁻³	0.02495673

<u>Curves</u>

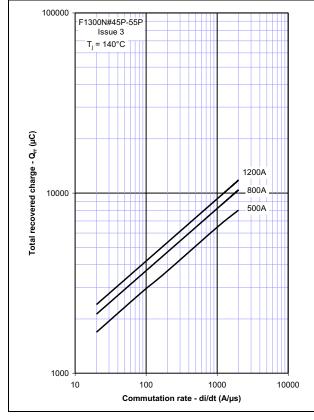


Figure 2 – Maximum forward recovery voltage

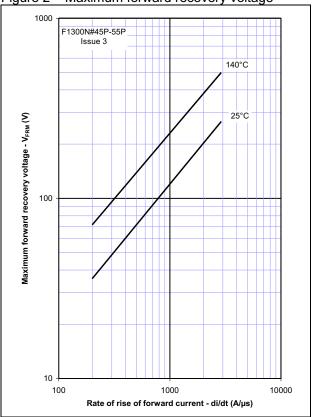
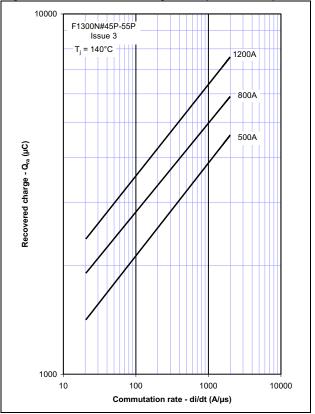
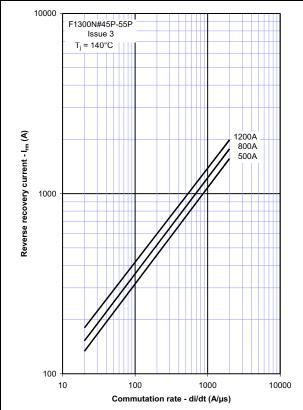




Figure 4 – Recovered charge, Q_{ra} (50% chord)

Figure 5 - Maximum reverse current, Irm

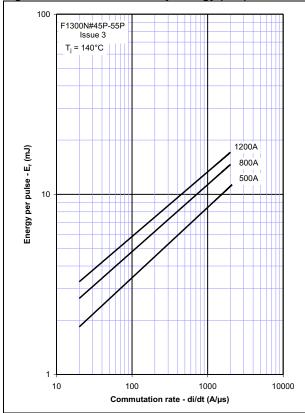
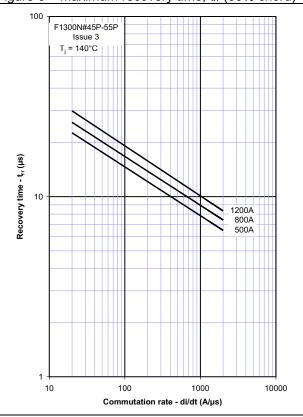
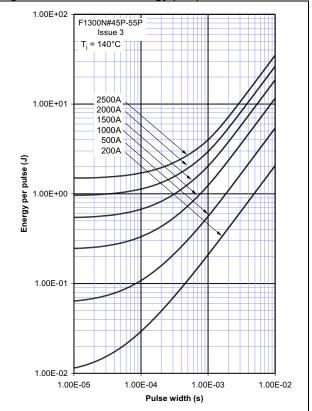
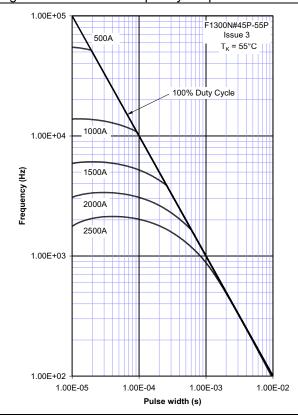
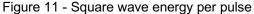
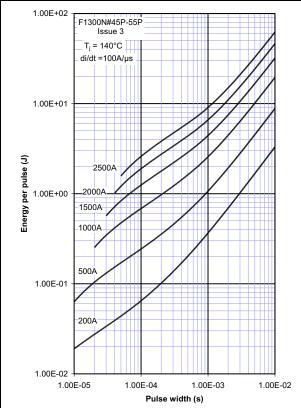


Figure 6 – Maximum recovery time, trr (50% chord)


Figure 8 – Sine wave energy per pulse



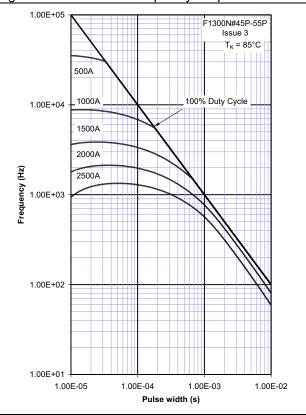


Figure 12 - Square wave energy per pulse

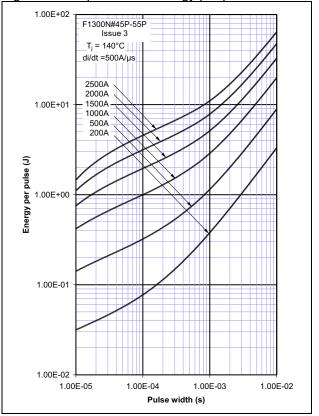


Figure 10 - Sine wave frequency vs. pulse width

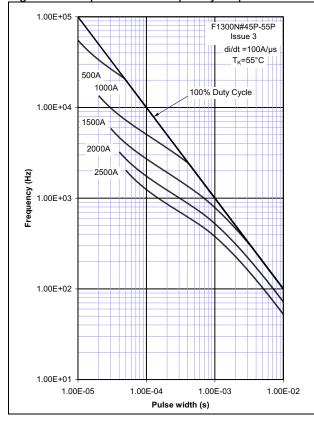


Figure 13 - Square wave frequency vs pulse width

Figure 14 – Square wave frequency vs pulse width

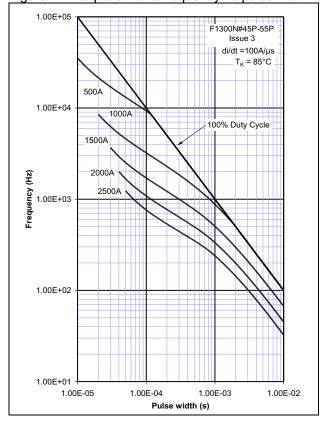


Figure 16 – Square wave frequency vs pulse width

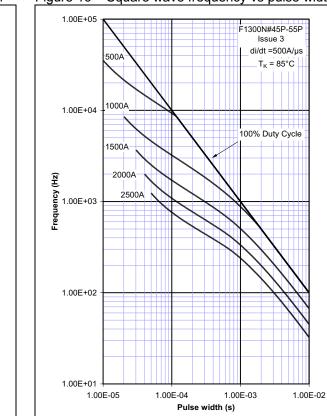
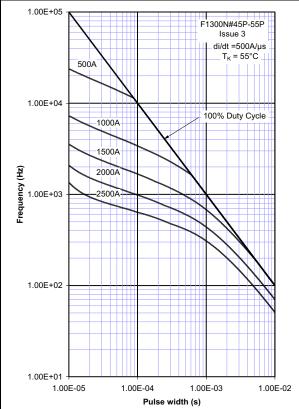
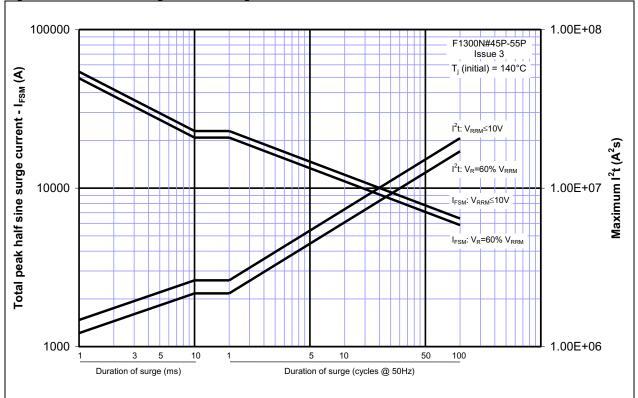
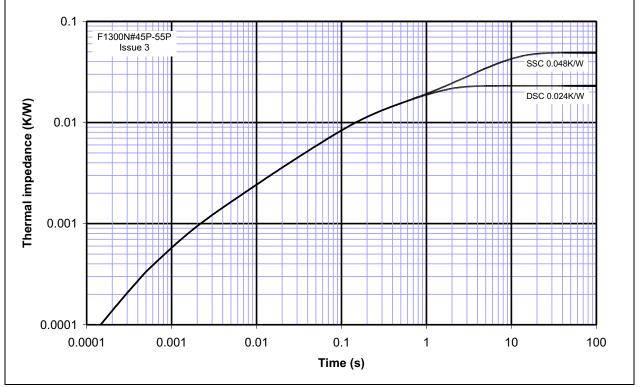
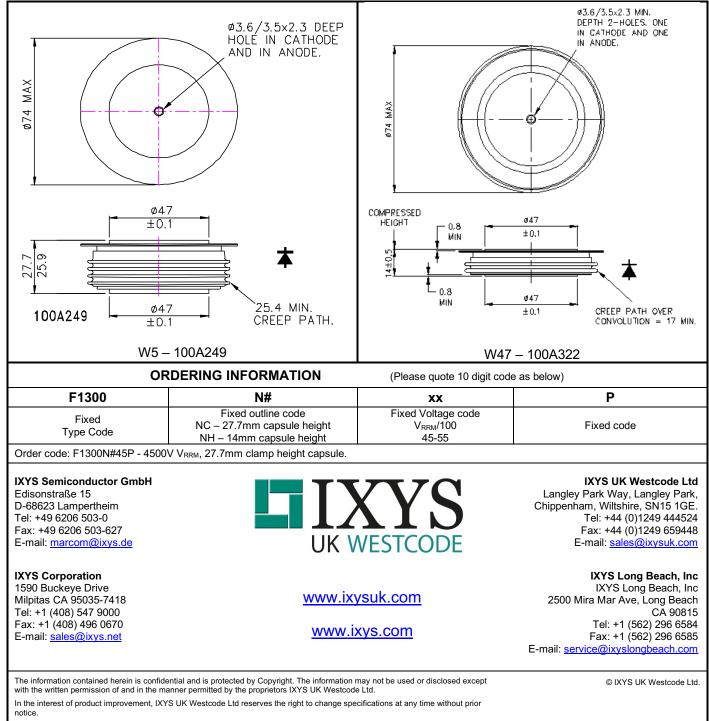



Figure 15 - Square wave frequency vs pulse width


Figure 17 – Maximum surge and I²t ratings

Outline Drawing & Ordering Information

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.