
PLEDxN Series

Pinout Diagram

Schematic Symbol

Description

The open LED protector provides a switching electronic shunt path when a single LED in an LED string fails as an open circuit. This ensures the entire LED string will continue to function even if a single LED in the string does not. This provides higher reliable lighting functions in applications such as headlights, aircraft lights, airport runway lighting, roadside warning lights, etc. This component is compatible with one watt rated LEDs with a nominal 350 mA current at 3V. The SOD-123FL package is one of the lowest height profiles (1.1 mm) packages offered in the industry.

Features & Benefits

- Fast switching
- Automatically resets after power cycle
- Compatible with industrial standard package SOD-123FL
- Compatible with industrial lighting environments
- IEC 61000-4-2 ESD 30kV (Air), 30kV (Contact)
- ESD protection of data lines in accordance with IEC 61000-4-2

RoHS

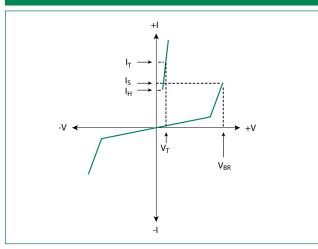
- Low profile: maximum height of 1.1mm
- RoHS compliant and halogen-free
- MSL: Level 1 unlimited

Electrical	Characte	ristics(All par	ameters	are mea	sured at T _A	=25°C unles	s otherwise no	oted)	
Part Number	Marking	V @I _{BR} = 1	_{вк} mAmps	I _{leak} V _{MT2} = 5V	I _H	I _s	I _T @V _T	V ₇ @I ₇ = 350mA	Critical rate of rise dV/dt	Capacitance @1MHz, 2V bias
			lts	uA	mA	mA	Α	V	V	pF
		Min	Max	Max	Max	Max	Max	Max	Мах	Max
PLED6N	P6N	5.5	7.5	250	12	70	1.0 ^{1, 2}	1.2	250	24

Notes:

1) Standard FR-4 PCB with Copper Pads (2mm x 2mm/pad)

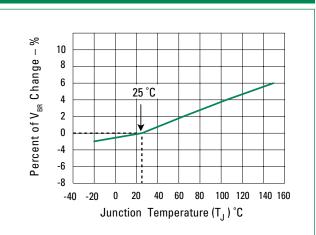
2) Aluminum PCB Pads (2mm x 3mm/pad)

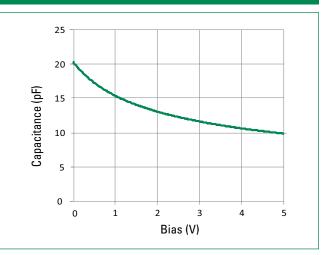

Thermal Considerations

Symbol	Parameter	Value	Unit	
Ι _τ	Average On–State Current, ($T_A = 25^{\circ}C$)	1.0 ^{1, 2}	А	
V _T	On-state Voltage ($T_A = 125^{\circ}C$)	1.0	V	
D	Power Dissingtion $(T - 25^{\circ}C)$	1.45 ¹	W	
P _D	Power Dissipation ($T_A = 25^{\circ}C$)	1.50 ²		
TJ	Operating Junction Temperature Range	-65 to +150	°C	
Τ _s	Storage Temperature Range		°C	
D	Thermal Desistance, Junction to Load	25 ¹	00/10/	
R _{eJL}	Thermal Resistance: Junction to Lead	20 ²	°C/W	
P	Thermal Resistance: Junction to Ambient	80 ¹	00/14/	
R _{eja}	mermai nesistance. Junction to Amblent	50 ²	°C/W	

Notes: 1) Standard FR-4 PCB with Copper Pads (2mm x 2mm/pad)

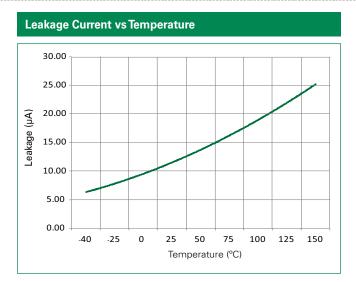
2) Aluminum PCB Pads (2mm x 3mm/pad)

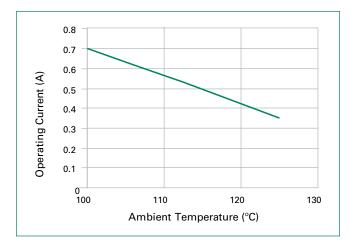

V-I Characteristics


2.0 Ratio of $\frac{1}{i_H}$ (T_C = 25 °C) 1.8 1.6 ._= 1.4 1.2 25 °C 1.0 0.8 0.6 0.4 20 40 60 80 100 120 140 160 -40 -20 0 Ambient Temperature (T_C) $^{\circ}$ C

Normalized DC Holding Current vs. Ambient Temperature

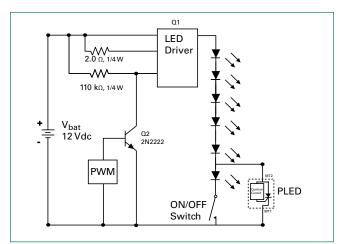
V_{BR} vs. Junction Temperature

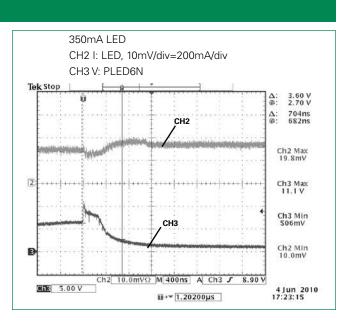

Capacitance vs Voltage

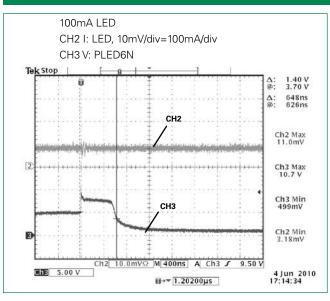


PLED Open LED Protectors

PLEDxN Series

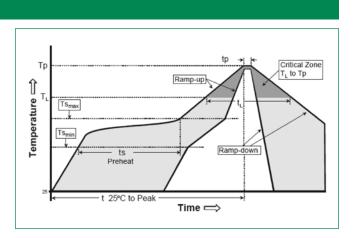



Operating Current vs. Ambient Temperature


1.24 1.22 1.20 1.18 1.16 > 1.14 1.12 1.10 1.08 1.06 0.1 0.6 1.1 1.6 2.1 I_T

LED Interference Test Circuit

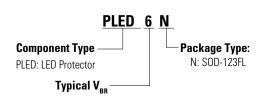
Typical Operation Waveforms


V_T vs I_T

^{© 2020} Littelfuse, Inc. Specifications are subject to change without notice. Revised: 03/31/20

Soldering Parameters

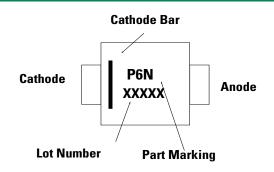
Reflow Condition		Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ram	3°C/second max		
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
	- Temperature (t _L)	60 - 150 seconds	
Peak Temperature (T _P)		260 ^{+0/-5} °C	
Time within	Time within 5°C of actual peak Temperature $(t_{_p})$		
Ramp-down Rate		6°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes max	
Do not exce	260°C		



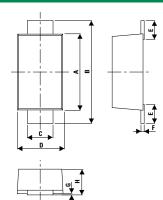
Physical Specifications

Terminal Material	Copper Alloy		
Terminal Finish	100% Matte Tin Plated		
Body Material	UL recognized epoxy meeting flammability classification V-0		

Packaging				
Package Code	Description	Packaging Quantity	Industry Standard	
N	SOD-123FL	3000	EIA-481 Tape and Reel	

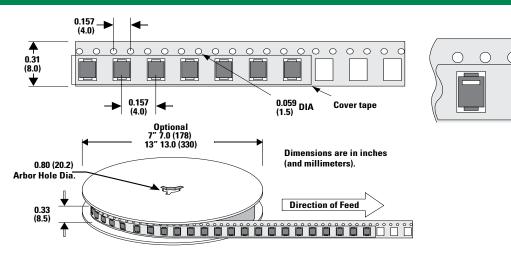

Part Numbering System

Environmental Specifications


High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A, 80% min V _{BR} DC, 150°C, 504 hours
Temperature Cycling	MIL-STD-750: Method 1051, -65°C to 150°C, 15-minute dwell, 100 cycles
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 80% min V _{BR} , 85°C, 85%RH, 1008 hours
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds
Moisture Sensitivity Level	JEDEC-J-STD-020, Level 1
Burn-In Test	I _T = 0.350 Adc, 1008 hours

Part Marking System

Dimensions - SOD-123FL Package


Mounting Pad Layout 1.6 (0.062)

1.3 (0.051)

1.4 (0.055) ŧ

Dimensions	Millin	neters	Inches		
Dimensions	Min	Max	Min	Max	
Α	2.50	2.90	0.0984	0.1142	
В	3.40	3.90	0.1339	0.1535	
С	0.70	1.20	0.0275	0.0472	
D	1.50	2.00	0.0591	0.0787	
E	0.35	0.90	0.0138	0.0354	
F	0.05	0.26	0.0020	0.0102	
G	0.00	0.10	0.0000	0.0039	
Н	0.95	1.10	0.0374	0.0433	

Tape and Reel Specification

Cathode

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.