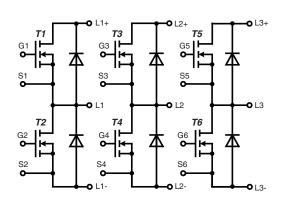


Three phase full Bridge


with Trench MOSFETs in DCB isolated high current package

V _{DSS}	=	75	V
I _{D25}	=	255	Α
R _{DSon typ.}	=	1.1	$\mathbf{m}\Omega$

Part number MTI200WX75GD

Surface Mount Device

Features / Advantages:

- MOSFETs in trench technology:
- low R_{DSon}
- optimized intrinsic reverse diode
- package:
 - high level of integration
 - high current capability
 - aux. terminals for MOSFET gate control
- terminals for soldering or welding connections
- isolated DCB ceramic base plate with optimized heat transfer
- Space and weight savings
- High current capability

Applications:

AC drives

- in automobiles
- electric power steering
- starter generator
- in industrial vehicles
 propulsion drives
 fork lift drives
- Battery supplied equipment
- DC-DC converter

Package: ISOPLUS-DIL®

- High level of integration
- RoHS compliant
- Terminals for soldering or welding connections
- Space and weight savings
- High reliability
- Low thermal impedance

Terms & Conditions of usage

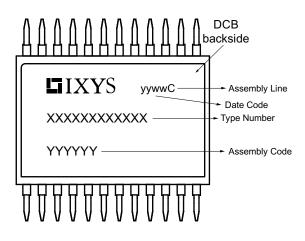
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures

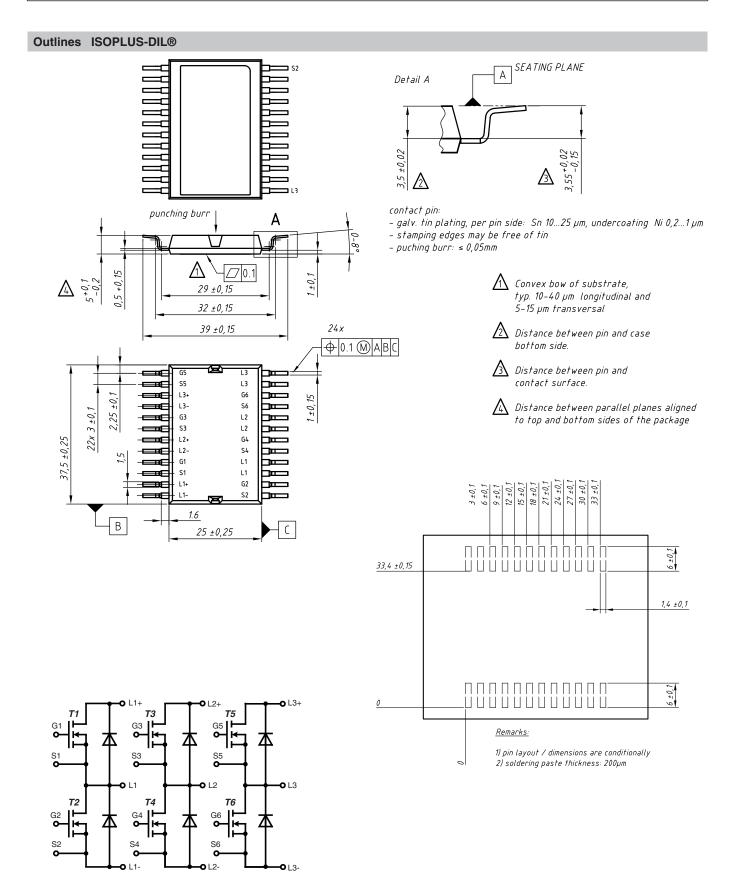
IXYS reserves the right to change limits, test conditions and dimensions.

© 2017 IXYS All rights reserved


The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

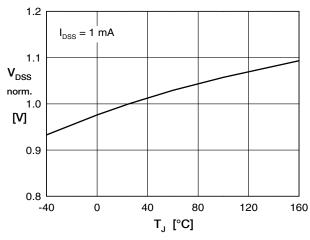
MOSFET	'S				Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	T _{vJ} = 25	°C to 150°C			75	V
V _{GS}	max. DC gate source voltage					±15	V
V _{GSM}	max. transient gate source voltage					±20	V
D25	continuous drain current		$T_c = 25^{\circ}C$			255	A
D90	(die capability)		$T_c = 90^{\circ}C$			190	A
R _{DS(on)} ¹⁾	static drain source on resistance		$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.1 1.8	1.3	mΩ mΩ
V _{GS(th)}	gate threshold voltage	$I_{\rm D} = 275 \ \mu \text{A}; \ V_{\rm DS} = V_{\rm GS}$	$T_{VJ} = 25^{\circ}C$	2.3	3.1	3.8	V
I _{DSS}	drain source leakage current	$V_{\text{DS}} = V_{\text{DSS}}; V_{\text{GS}} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		10	1 100	μA μA
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				500	nA
R _g	gate resistance	on chip			2.7		Ω
C _{iss}	input capacitance				10.8	14.4	nF
Coss	output capacitance	$V_{GS} = 0 V; V_{DS} = 38 V; f = 1 Mhz$			2.42	3.22	nF
C _{rss}	reverse transfer capacitance				110	-	pF
Q _g	total gate charge]			155		nC
Q _{gs}	gate source charge	\succ V _{GS} = 10 V; V _{DS} = 38 V; I _D = 100 A			53		nC
\mathbf{Q}_{gd}	gate drain (Miller) charge	<u></u>			32		nC
t _{d(on)}	turn-on delay time)			145		ns
t _r	current rise time				70	1	ns
t _{d(off)}	turn-off delay time		T _{vj} = 125°C		520	1	ns
t _f	current fall time	$V_{GS} = 10 \text{ V}; V_{DS} = 30 \text{ V}$			55		ns
E _{on}	turn-on energy per pulse	$I_{\rm D} = 100 \text{ A}; \text{ R}_{\rm G} = 27 \ \Omega$			80	1	μJ
E _{off}	turn-off energy per pulse				350	1	μJ
E _{rec(off)}	turn-off reverse recovery losses)			8		μJ
R _{thJC}	thermal resistance junction to case					0.85	K/W
R _{thJH}	thermal resistance junction to heatsink	with heat transfer paste (IXYS test	setup)		1.1	1.4	K/W
		¹⁾ $V_{\text{DS}} = I_{\text{D}} \cdot (R_{\text{DS(on)}} + 2 \cdot R_{\text{Pin to Chip}})$					1
Source-E	Drain Diode					1	
I _{F25}	forward current (body diode)	$V_{GS} = 0 V$	$T_c = 25^{\circ}C$			175	A
I _{F90}			$T_c = 90^{\circ}C$			100	A
V _{SD}	source drain voltage	$I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		0.9	1.2	V
Q _{RM}	reverse recovery charge		T _{v.I} = 125°C		730		nC
I _{RM}	max. reverse recovery current	$V_{R} = 30 \text{ V}; I_{F} = 100 \text{ A}$ $R_{G} = 27 \Omega$	$I_{VJ} = 125^{-}C$		27		A
t _{rr}	reverse recovery time	$\int \Pi_{G} = 27.32$			42	ļ	ns

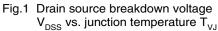
Package	ISOPLUS-DIL®				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	(L1+L3+, L1l may be additiona (PCB tracks)	per pin in main current paths (L1+L3+, L1L3-, L1L3) may be additionally limited by external connections (PCB tracks) 2 pins for output L1, L2, L3			75	A	
T _{stg}	storage temperature			-55		125	°C	
T _{op}	operation temperature			-55		150	°C	
T _{vj}	virtual junction temperature			-55		175	°C	
Weight					13		g	
Fc	mounting force with clip			50		250	N	
VISOL	isolation voltage	t = 1 second		1200	V			
		t = 1 minute	50/60 Hz, RMS, $I_{ISOL} \le 1 \text{ mA}$	1000		1	V	
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_D \cdot (R_{DS(on)})$	$V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{pin to chip})$		0.5		mΩ	
C _P	coupling capacity	between shorted	between shorted pins and back side metallization			1	pF	


Part number

- M = MOSFET
- T = Trench
- I = Infineon Trench
- 200 = Current Rating [A] WX = 6-Pack with separated phase legs 75 = Reverse Voltage [V] GD = ISOPLUS-DIL

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MTI200WX75GD-SMD	MTI200WX75GD	Tube	13	516955


LIXYS


MTI200WX75GD

IXYS reserves the right to change limits, test conditions and dimensions.

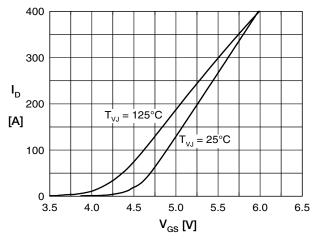
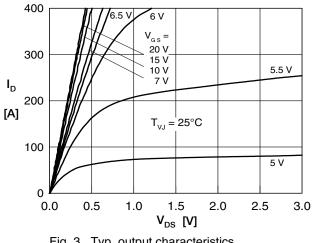
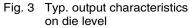
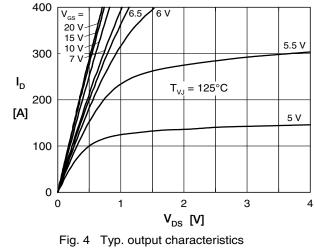




Fig. 2 Typ. transfer characteristics



R_{DS(on}

100

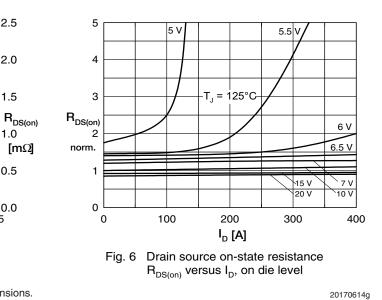
125

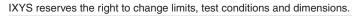
150

2.5

2.0

1.5


1.0


0.5

0.0

175

[mΩ]

75

Т_」 [°С]

Fig.5 Drain source on-state resistance $R_{DS(on)}$

vs. junction temperature $T_{V,I}$, on die level

50

© 2017 IXYS All rights reserved

0

2.5

2.0

1.5

1.0

0.5

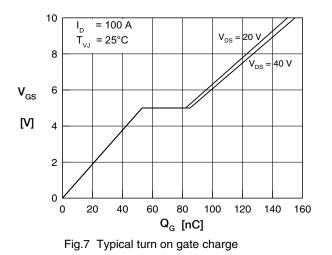
0.0

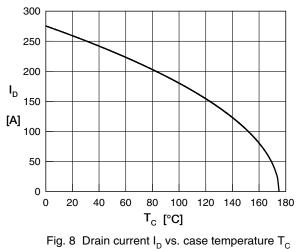
-25

R_{DS(on)}

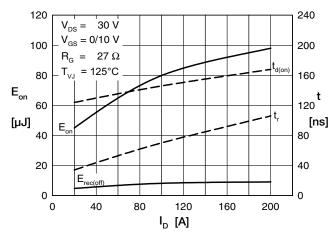
norm.

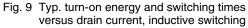
 $V_{GS} = 10 V$ 38 A


 $I_D =$


R_{DS(}

normalized


25



(Chip capability)

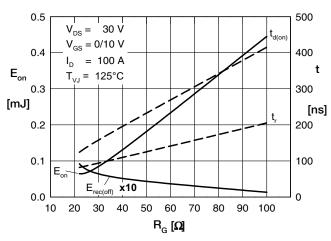
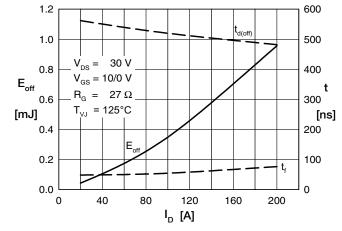
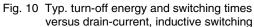
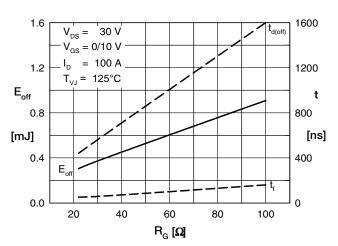
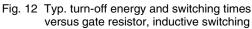
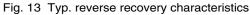






Fig. 11 Typ. turn-on energy and switching times versus gate resistor, inductive switching



IXYS reserves the right to change limits, test conditions and dimensions.

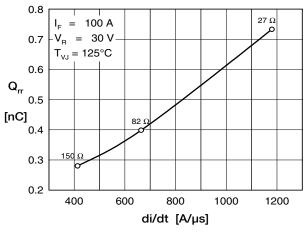


Fig. 14 Typ. reverse recovery characteristics

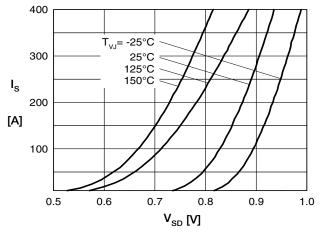


Fig.15 Source current I_S vs. source drain voltage V_{SD} (body diode) on die level

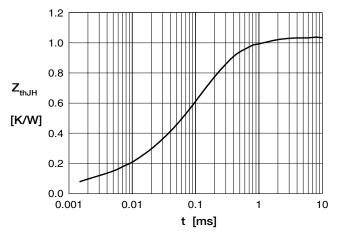


Fig. 16 Typ. thermal impedance junction to heatsink Z_{thJH} with heat transfer paste (IXYS test setup)

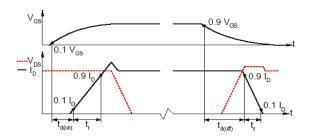


Fig. 17 Definition of switching times

IXYS reserves the right to change limits, test conditions and dimensions.