## FRED

| $V_{\text {RRM }}$ | $=600 \mathrm{~V}$ |
| :--- | :--- |
| $I_{\text {FAV }}$ | $=2 \mathrm{x}$ |
| $\mathrm{t}_{\text {rr }}$ | $=35 \mathrm{~A}$ |
|  | $=35 \mathrm{~ns}$ |

## Parallel legs

## Part number

DFE250X600NA


NㅔN2873


## Features / Advantages:

- Planar passivated chips
- Low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch


## Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling


## Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

DFE250X600NA

| Fast Diode |  |  | Ratings |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Definition Conditions |  | min. | typ. | max. | Unit |
| $\mathrm{V}_{\text {RSM }}$ | max. non-repetitive reverse blocking voltage | $\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ |  |  | 600 | V |
| $\mathrm{V}_{\text {RRM }}$ | max. repetitive reverse blocking voltage | $\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$ |  |  | 600 | V |
| $\mathrm{I}_{\text {R }}$ | reverse current, drain current $\quad \begin{array}{ll}\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=480 \mathrm{~V}\end{array}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{v} \jmath}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \jmath}=125^{\circ} \mathrm{C} \end{aligned}$ |  |  | 3 20 | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {F }}$ | forward voltage drop $\begin{aligned} & \text { l } \\ & \\ & \mathrm{I}_{\mathrm{F}}=125 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=250 \mathrm{~A}\end{aligned}$ | $\mathrm{T}_{\mathrm{v} s}=25^{\circ} \mathrm{C}$ |  |  | $\begin{aligned} & 1.26 \\ & 1.46 \end{aligned}$ | V V |
|  | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=125 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=250 \mathrm{~A} \end{aligned}$ | $\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$ |  |  | $\begin{aligned} & 1.16 \\ & 1.52 \end{aligned}$ | V |
| $\overline{I_{\text {fav }}}$ | average forward current $\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$ <br> rectangular$\quad \mathrm{d}=0.5$ | $\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$ |  |  | 125 | A |
| $\begin{aligned} & \overline{V_{\mathrm{FO}}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$ |  | $\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$ |  |  | $\begin{array}{r} 0.81 \\ 2.9 \end{array}$ | $V$ $m \Omega$ |
| $\mathrm{R}_{\text {thJc }}$ | thermal resistance junction to case |  |  |  | 0.4 | K/W |
| $\mathbf{R}_{\text {thcH }}$ | thermal resistance case to heatsink |  |  | 0.10 |  | K/W |
| $\mathbf{P}_{\text {tot }}$ | total power dissipation | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  |  | 312 | W |
| $\mathrm{I}_{\text {FSM }}$ | max. forward surge current $\quad \mathrm{t}=10 \mathrm{~ms}$; $(50 \mathrm{~Hz})$, sine; $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{v},}=45^{\circ} \mathrm{C}$ |  |  | 1.30 | kA |
| $\mathrm{C}_{\text {J }}$ | junction capacitance $\quad \mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$ |  | 107 |  | pF |
| $\mathrm{I}_{\mathrm{RM}}$ | max. reverse recovery current $\left\{\begin{array}{l}\text { d } \\ \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=300 \mathrm{~V}\end{array}\right.$ | $\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 27 40 |  | A |
| $\mathbf{t r r}^{\text {r }}$ | reverse recovery time $\quad \int-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=600 \mathrm{~A} / \mu \mathrm{s}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} J}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 80 150 |  | ns |




| Ordering | Ordering Number | Marking on Product | Delivery Mode | Quantity | Code No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | DFE250X600NA | DFE250X600NA | Tube | 10 | 524065 |

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$

| $\mathrm{I} \rightarrow \mathrm{~V}_{0}-\mathrm{R}_{0}$ |  | Fast Diode |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{0 \text { max }}$ | threshold voltage | 0.81 | $\checkmark$ |
| $\mathbf{R}_{0 \text { max }}$ | slope resistance * | 1.4 | $\mathrm{m} \Omega$ |

## Outlines SOT-227B (minibloc)



| Dim | Millimeter |  | Inches |  |
| :---: | :---: | :---: | :---: | :---: |
|  | min | max | min | max |
| A | 31.50 | 31.88 | 1.240 | 1.255 |
| 日 | 7.80 | 8.20 | 0.307 | 0.323 |
| C | 4.09 | 4.29 | 0.161 | 0.169 |
| D | 4.09 | 4.29 | 0.161 | 0.169 |
| E | 4.09 | 4.29 | 0.161 | 0.169 |
| F | 14.91 | 15.11 | 0.587 | 0.595 |
| G | 30.12 | 30.30 | 1.186 | 1.193 |
| H | 37.80 | 38.23 | 1.488 | 1.505 |
| J | 11.68 | 12.22 | 0.460 | 0.481 |
| K | 8.92 | 9.60 | 0.351 | 0.378 |
| L | 0.74 | 0.84 | 0.029 | 0.033 |
| M | 12.50 | 13.10 | 0.492 | 0.516 |
| N | 25.15 | 25.42 | 0.990 | 1.001 |
| O | 1.95 | 2.13 | 0.077 | 0.084 |
| P | 4.95 | 6.20 | 0.195 | 0.244 |
| Q | 26.54 | 26.90 | 1.045 | 1.059 |
| R | 3.94 | 4.42 | 0.155 | 0.167 |
| S | 4.55 | 4.85 | 0.179 | 0.191 |
| T | 24.59 | 25.25 | 0.968 | 0.994 |
| U | -0.05 | 0.10 | -0.002 | 0.004 |
| V | 3.20 | 5.50 | 0.126 | 0.217 |
| W | 19.81 | 21.08 | 0.780 | 0.830 |
| Z | 2.50 | 2.70 | 0.098 | 0.106 |



## Fast Diode



Fig. 1 Forward current $I_{F}$ versus $V_{F}$


Fig. 4 Typ. dyn. parameters $Q_{r}, I_{R M}$ versus $T_{V J}$


Fig. 2 Typ. reverse recov. charge $\mathrm{Q}_{\mathrm{rr}}$ versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$


Fig. 5 Typ. recovery time $\mathrm{t}_{\mathrm{rr}}$ versus - $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

| i | $\mathrm{R}_{\text {thi }}$ <br> $[\mathrm{K} / \mathrm{W}]$ | $\mathrm{t}_{\mathrm{i}}$ <br> $[\mathrm{s}]$ |
| :---: | :---: | :---: |
| 1 | 0.040 | 0.010 |
| 2 | 0.045 | 0.002 |
| 3 | 0.070 | 0.026 |
| 4 | 0.110 | 0.300 |
| 5 | 0.135 | 0.110 |

Fig. 7 Transient thermal impedance junction to case

