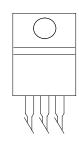

RoHS

Po

MAC12SM, MAC12SN TRIACS 600V - 800V

Additional Information



Samples

Resources

Pin Out

Description

Designed for industrial and consumer applications for full wave control of AC loads such as appliance controls, heater controls, motor controls, and other power switching applications.

Features

- Sensitive Gate Allows Triggering by Microcontrollers and other
- Logic Circuits
- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 70°C
- High Surge Current Capability
 90 Amperes
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity

*RoHS-compliant and lead-free

- Maximum Values of IGT, VGT and IH Specified for Ease of Design
- High Commutating di/dt 8.0 A/ms Minimum at 110°C
- Immunity to dV/dt 15 V/sec Minimum at 110°C
- Operational in Three Quadrants: Q1, Q2, and Q3
- These Devices are Pb–Free and are RoHS Compliant*

Functional Diagram

Maximum Ratings ($T_1 = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = 40$ to 110°C)	V _{drm} , V _{rrm}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 7$	I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 110°C)	I _{TSM}	100	А
Circuit Fusing Consideration ($t = 8.3 \text{ ms}$)	l²t	33	A ² sec
Peak Gate Power (Pulse Width \leq 1.0 µs, T _c = 70°C)	P _{GM}	16	W
Average Gate Power (t = 8.3 ms, $T_c = 70^{\circ}$ C)	P _{G(AV)}	0.35	W
Operating Junction Temperature Range	T,	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		TL	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted ; Electricals apply in both directions)

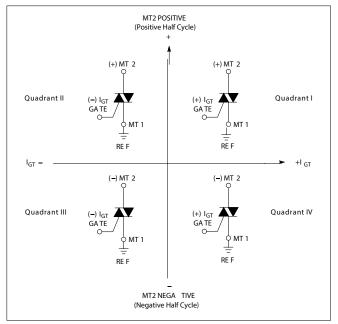
Characteristic		Symbol	Min	Тур	Мах	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	~ ^
$(V_{D} = V_{DRM} = V_{RRM}; Gate Open)$	T_ = 110°C	I	-	-	2.0	mA

Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic			Min	Тур	Max	Unit
Peak On–State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A}$)		V _{TM}	-	-	1.85	V
Gate Trigger Current	MT2(+), G(+)		-	1.5	5.0	mA
(Continuous dc)	MT2(+), G(-)	I _{gt}	-	2.5	5.0	
$(V_{D} = 12 V, R_{L} = 100 \Omega)$	MT2(-), G(-)		-	2.7	5.0	
Holding Current ($V_p = 12 V$, Gate Open, Initiating Current = $\pm 200 mA$))		I _H	-	2.5	10	mA
	MT2(+), G(+)		-	3.0	15	mA
Latching Current ($V_p = 12 V$, $I_c = 5 mA$)	MT2(+), G(-)	I,	-	5.0	20	
$(v_{\rm D} - 12, v, 1_{\rm G} - 5, 11, -7)$	MT2(-), G(-)		-	3.0	15	
	MT2(+), G(+)		0.45	0.68	1.5	
Gate Trigger Voltage ($V_{D} = 12 V, R_{1} = 100 \Omega$)	MT2(+), G(-)	V _{gt}	0.45	0.62	1.5	V
$v_{\rm D} = 12 v_{\rm r} + 1_{\rm L} = 100 22$	MT2(-), G(-)		0.45	0.67	1.5	

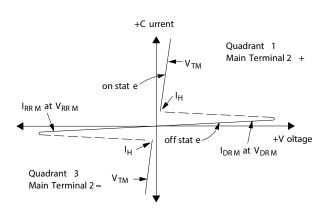
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%

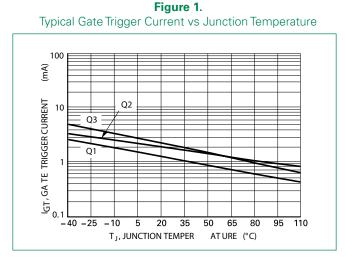

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Мах	Unit
Critical Rate of Change of Commutating Current (V _D = 400 V, I _{TM} = 3.5 A, Commutating dv/dt = 10 V/µs,Gate Open, T _J = 110 °C, f = 500 Hz, Snubber: C _s = 0.01 µf, R _s = 15 Ω)	(dv/dt) _c	8.0	10	-	A/ms
Critical Rate of Rise of Off-State Voltage (V _D =67 % V _{DBM} , Exponential Waveform, R _{GK} =1 K, T _J = 110 °C)	dV/dt	15	40	_	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μ sec; diG/dt = 100 mA/ μ sec; lgt = 100 mA; f = 60 Hz	di/dt	_	-	10	A/µs

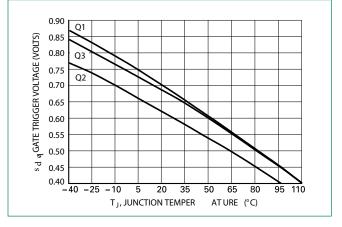
Voltage Current Characteristic of SCR

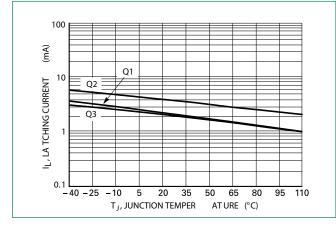

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac


All polarities are referenced to MT1.

With in -phase signals (using standard AC lines) quadrants I and III are used




MAC12SM, MAC12SN TRIACS 600V - 800V

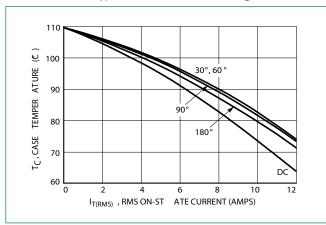
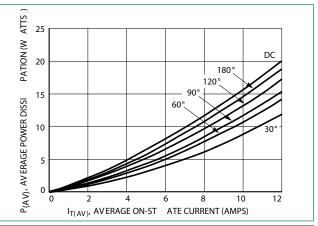

Figure 2. Typical Gate Trigger Voltage vs Junction Temperature

Figure 3. Typical Holding Current vs Junction Temperature

Figure 5. Typical RMS Current Derating



11 Littelfuse

Figure 4. Typical Latching Current vs Junction Temperature

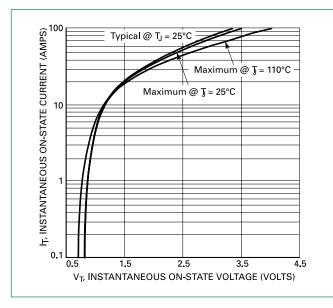
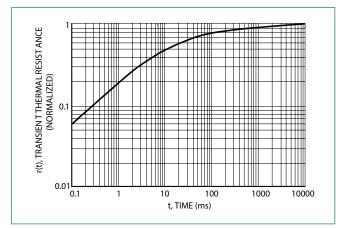


Figure 6. On-State Power Dissipation


© 2022 Littelfuse, Inc. Specifications are subject to change without notice. Revised: TK. 04/11/22

MAC12SM, MAC12SN TRIACS 600V - 800V

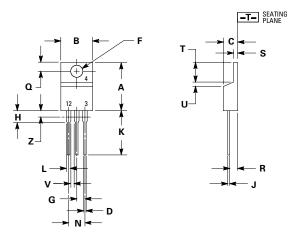
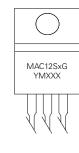

Figure 7. Typical On-State Characteristics

Figure 8. Typical Thermal Response

MAC12SM, MAC12SN TRIACS 600V - 800V


Dimensions

Inches

Part Marking System

Dim	Inches		Millimeters			
Dilli	Min	Max	Min	Мах		
Α	0.590	0.620	14.99	15.75		
В	0.380	0.420	9.65	10.67		
С	0.178	0.188	4.52	4.78		
D	0.025	0.035	0.64	0.89		
F	0.142	0.147	3.61	3.73		
G	0.095	0.105	2.41	2.67		
Н	0.110	0.130	2.79	3.30		
J	0.018	0.024	0.46	0.61		
К	0.540	0.575	13.72	14.61		
L	0.060	0.075	1.52	1.91		
Ν	0.195	0.205	4.95	5.21		
٥	0.105	0.115	2.67	2.92		
R	0.085	0.095	2.16	2.41		
S	0.045	0.060	1.14	1.52		
Т	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
V	0.045		1.15			
Z		0.080		2.04		

Millimotore

Pin Assignment			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

Ordering Information

Device	Package	Shipping
MAC12SMG	TO-220AB	1000 Units / Box
MAC12SNG	(Pb-Free)	1000 UTILS / BOX

Dimensioning and tolerancing per ansi y14.5m, 1982.
 Controlling dimension: inch.

3. Dimension z defines a zone where all body and lead irregularities are allowed.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

