

Additional Information

Resources

Accessories

Samples

Agency Approvals

Agency	Agency File Number	Ampere Range
71	E10480	0.250 A - 5.0 A
® ;	29862	0.250 A - 5.0 A
\triangle	J50481982	0.250 A - 5.0 A

Description

The 435 Series are fast-acting surface mount thin-film fuses. Their ultra-small size (0402 size) makes them ideal for secondary protection of circuits used in space constrained applications such as hand-held portable electronic devices.

This series is 100% lead-free and meet the requirements of the RoHS directive. New Halogen-Free 435 Series fuses are available—to order use the "HF" suffix. See Part Numbering section for additional information.

Features & Benefits

- 50A interrupt rating at 32VDC
- Small size with current ratings of 0.25 to 5.0 amperes
- RoHS compliant, Lead-Free and Halogen-Free
- Enhanced Breaking Capacity, High I²t
- Maximum protection of sensitive circuits as fuses are designed to open consistently in <5sec at 200% overload.
- Recognized to UL/CSA/NMX 248-1 and UL/CSA/NMX 248-14

Applications

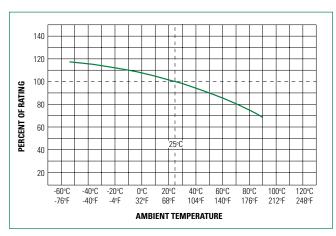
Secondary protection for space constrained applications such as:

- Cell phones
- Battery packs
- Digital cameras
- DVD players
- Hard disk drives.

Electrical Characteristics

% of Ampere Rating	Ampere Rating	Opening Time at 25°C
100%	0.250A - 5A	4 hours, Minimum
200%	0.375A - 5A	5 secs., Maximum
300%	0.250A	5 secs., Maximum
300%	0.375A - 5A	0.2 sec., Maximum

Electrical Specifications

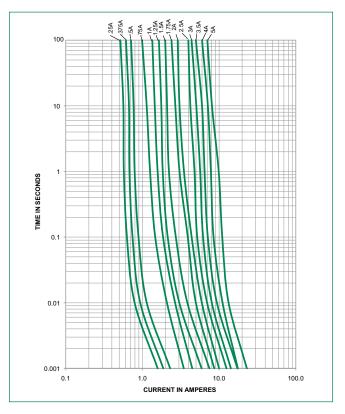

Ampere	Amp	Max Voltage	Interrupting	Nominal Cold	Nominal Melting	Nom	Nom Power Dissipation (W)	Agency Approvals		
Rating (A)	Code	Rating (V)	Rating	Resistance (Ohms)	I ² t (A ² sec)	Voltage Drop (mV)		A	M	® ;
0.250	.250	32		0.3600 ¹	0.0025	92.49	0.0231	X	X	X
0.375	.375	32		0.1930^{1}	0.0035	84.64	0.03174	X	X	X
0.500	.500	32		0.1600 ¹	0.0053	93.35	0.04668	X	X	X
0.750	.750	32		0.1050 ¹	0.0120	101.84	0.07638	X	Х	Х
1.00	001.	32		0.0730^{1}	0.0200	87.45	0.08745	X	X	X
1.25	1.25	32		0.0600 ¹	0.0350	96.37	0.12046	X	X	X
1.50	01.5	32	50A @32VDC ²	0.04701	0.0560	86.70	0.13005	X	X	X
1.75	1.75	32	50A @32VDC-	0.0390^{1}	0.0750	81.13	0.14198	X	Х	X
2.00	002.	32		0.0300^{1}	0.1000	70.62	0.14120	X	X	X
2.50	02.5	32		0.0200 ¹	0.1560	55.25	0.13813	X	Х	Х
3.00	003.	32		0.01701	0.2032	60.58	0.18740	X	X	X
3.50	03.5	32		0.0150 ¹	0.3017	57.84	0.20244	X	X	X
4.00	004.	32		0.01051	0.3084	57.00	0.22800	X	X	X
5.00	005.	32		0.00851	0.5310	52.44	0.26220	X	х	Х

^{1.} Measured at 10% of rated current, 25°C.

^{2.} Measured at rated voltage

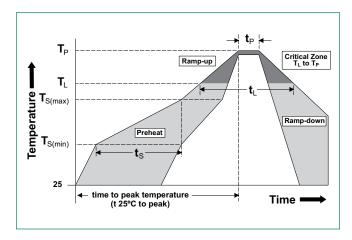
Temperature Re-rating Curve

Notes:


Rerating depicted in this curve is in addition to the standard derating of 25% for continuous operation.

Example:

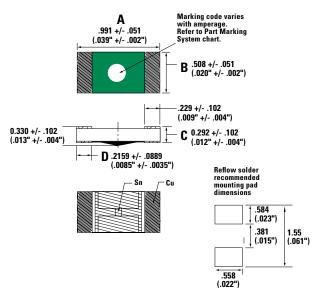
Example: For continuous operation at 70 degrees celsius, the fuse should be derated as follows: $I = (0.75)(0.80)_{\text{BAT}} = (0.60)I_{\text{BAT}}$


2. The temperature derating curve represents the nominal conditions. For questions about temperature derating curve, please consult Littelfuse technical support for assistance.

Average Time Current Curves

Soldering Parameters

Reflow Condition			Pb – Free assembly	
	- Temperature Min	emperature Min (T _{s(min)})		
Pre Heat	-Temperature Max (T _{s(max)})		200°C	
	-Time (Min to Ma	x) (t _s)	60 – 120 secs	
Average ramp up rate (Liquidus Temp (T _L) to peak			5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate			5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)		217°C	
	- Temperature (t _L)		60 – 150 seconds	
Peak Temperature (T _P)			250+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p) 20 – 40 second			20 - 40 seconds	
Ramp-down Rate 5°C/second ma			5°C/second max	
Time 25°C to peak Temperature (T _p) 8 minutes Ma			8 minutes Max.	
Do not exceed 260°C		260°C		
Wave Soldering 260°C, 10 seconds max.			max.	


435 Series 0402 Fast-Acting Fuse

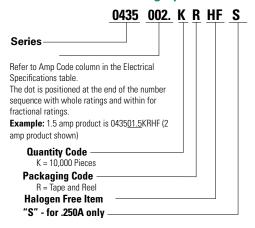
Product Characteristics

Materials	Body: Epoxy / Glass Substrate; Parts with 'HF' suffix: Halogen Free Epoxy / Glass Terminations: 100% Tin over Nickel over Copper Device Weight: 0.316mg
Terminal Strength	MIL-STD-202, Method 211, Test Condition A
Insulation Resistance	After Opening: Greater than 10,000Ohms

Operating Temperature	-55°C to 90°C. Consult temperature re-rating curve chart. For operation above 90°C please contact Littelfuse.
Thermal Shock	Withstands 5 cycles of -55°C to 125°C
Vibration	MIL-STD-202, Method 201

Dimensions

Unit	Α	В	С	D
inch min	0.037	0.018	0.008	0.005
inch max	0.041	0.022	0.016	0.012
mm min	0.94	0.457	0.190	0.127
mm max	1.04	0.559	0.394	0.305


Packaging

Packaging	Packaging	Quantity	Quantity &
Option	Specification		Packaging Code
8mm Tape and Reel	EIA-481 Rev. D (IEC 60286, part 3)	10000	KR

Part Marking System

Amp Code	Marking Code
0.250	ПХП
0.375	□
0.500	
0.750	
001.	
1.25	
01.5	
1.75	
002.	•
02.5	
003.	
03.5	
004.	00
005.	

Part Numbering System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.

