

Date:- 10 Oct, 2022

Data Sheet Issue:- A1

Advance Data Insulated Gate Bi-Polar Transistor Type T1375DF65E

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
Vces	Collector – emitter voltage	6500	V
VDC link	Permanent DC voltage for 100 FIT failure rate.	3600	V
Vges	Peak gate – emitter voltage	±20	V

	RATINGS	MAXIMUM LIMITS	UNITS
lc	Continuous DC collector current, IGBT	1375	А
Ісгм	Repetitive peak collector current, t _p =1ms, IGBT	2750	А
IECO	Maximum reverse emitter current, tp=100µs, (note 2 & 3)	1375	А
P _{MAX}	Maximum power dissipation, IGBT (note 2)	16.1	kW
T _{j op}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +125	°C

Notes: -

- 1) Unless otherwise indicated $T_j = 125^{\circ}C$.
- 2) $T_{sink} = 25^{\circ}C$, double side cooled.
- 3) Maximum commutation loop inductance 200nH.

Characteristics

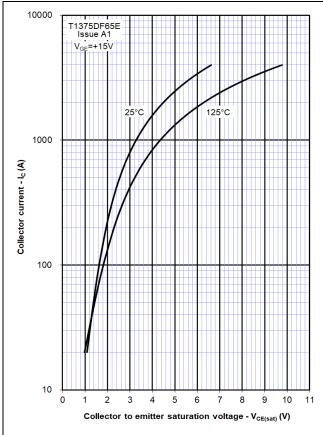
IGBT Characteristics

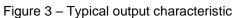
	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
V _{CE(sat)}	Collector – emitter saturation voltage	-	3.75	4.05	$I_C = 1375A, V_{GE} = 15V, T_j = 25^{\circ}C$	V
		-	5.10	5.40	$I_{C} = 1375A, V_{GE} = 15V$	V
V _{T0}	Threshold voltage	-	-	2.403	Current renge: 459A 1275A	V
r⊤	Slope resistance	-	-	2.18	Current range: 458A – 1375A	mΩ
$V_{\text{GE(TH)}}$	Gate threshold voltage	-	5.4	-	V _{CE} = V _{GE} , I _C = 1375mA	V
ICES	Collector – emitter cut-off current	-	9	30	$V_{CE} = V_{CES}, V_{GE} = 0V$	mA
Iges	Gate leakage current	-	-	±60	$V_{GE} = \pm 20V$	μA
Cies	Input capacitance	-	245	-	$V_{CE} = 25V, V_{GE} = 0V, f = 100kHz$	nF
t _{d(on)}	Turn-on delay time	-	1.3	-		μs
tr(V)	Rise time	-	3.2	-	I _C =1375A, V _{CE} =3600V, di/dt=3500A/μs	μs
Qg(on)	Turn-on gate charge	-	16	-	$V_{GE} = \pm 15V, L_s = 200nH$	μC
Eon	Turn-on energy	-	11.6	-	$R_{G(ON)}=2\Omega$, $R_{G(OFF)}=7.3\Omega$, $C_{GE}=100nF$	J
t _{d(off)}	Turn-off delay time	-	4.3	-	Freewheel diode type E1780TG65E at T _i =125°C	μs
t _f (I)	Fall time	-	2.1	-	(Notes 3, 4 & 5)	μs
Qg(off)	Turn-off gate charge	-	15.5	-		μC
Eoff	Turn-off energy	-	8.1	-		J
lsc	Short circuit current	-	6200	-	$\label{eq:VGE} \begin{array}{l} V_{\text{GE}} \mbox{=+}15\text{V}, \ V_{\text{CC}} \mbox{=-}3600\text{V}, \ V_{\text{CEmax}} \mbox{\leq-} V_{\text{CES}}, \\ t_p \mbox{\leq-} 10 \mbox{µs}, \ L_s \mbox{\leq-} 200n \mbox{H} \end{array}$	А

Thermal Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
		-	-	6.21	Double side cooled	K/kW
R _{thJK}	Thermal resistance junction to sink, IGBT	-	-	9.68	Collector side cooled	K/kW
		-	-	18	Emitter side cooled	K/kW
F	Mounting force	45	-	55	Note 2	kN
Wt	Weight	-	2.2	-		kg

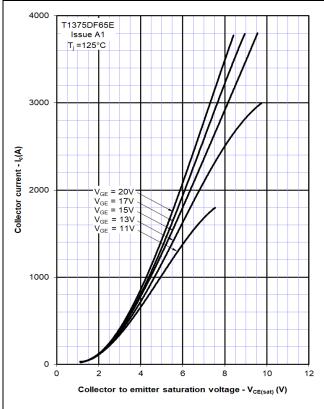
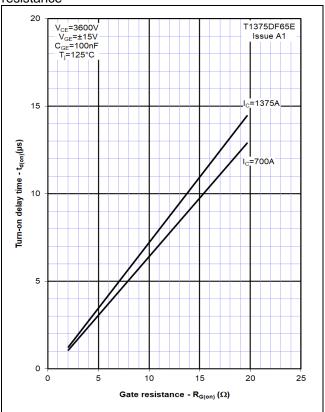
Notes:-


1) 2) 3) 4) 5)


Unless otherwise indicated T_j=125°C. Consult application note 2008AN01 for detailed mounting requirements. C_{GE} is additional gate - emitter capacitance added to output of gate drive circuit. E_{on} integration time 15µs from 10% rising I_{G.} E_{off} integration time 15µs from 90% falling V_{GE.}

<u>Curves</u>

Figure 1 – Typical collector-emitter saturation voltage characteristics

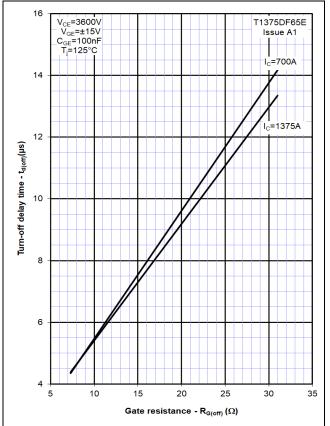


Figure 4 – Typical turn-on delay time vs gate resistance

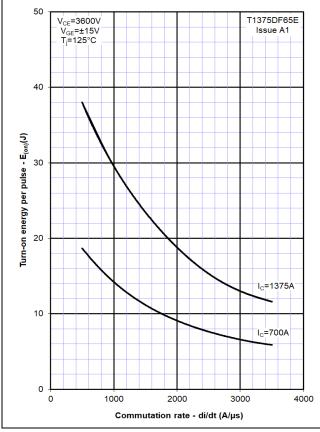


Figure 5 – Typical turn-off delay time vs. gate resistance

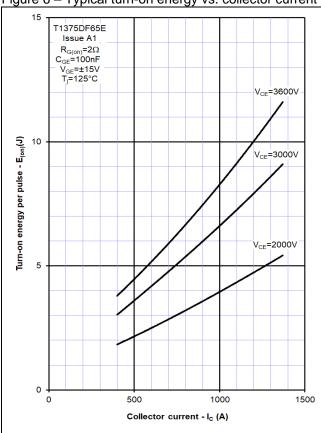


Figure 8 – Typical turn-off energy vs. collector current

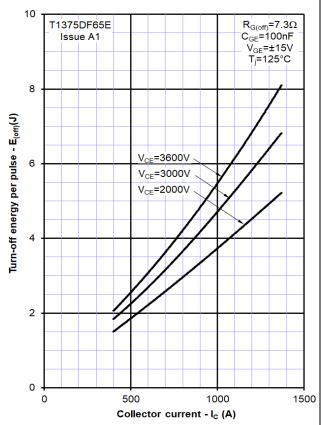
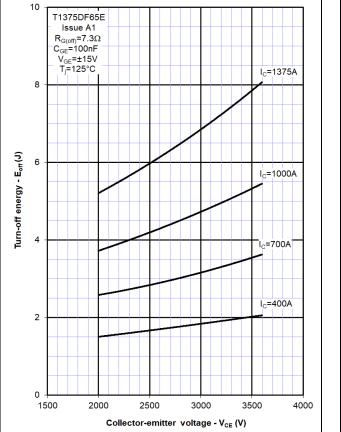



Figure 6 - Typical turn-on energy vs. collector current

Figure 9 – Turn-off energy vs voltage

Figure 10 – Safe operating area

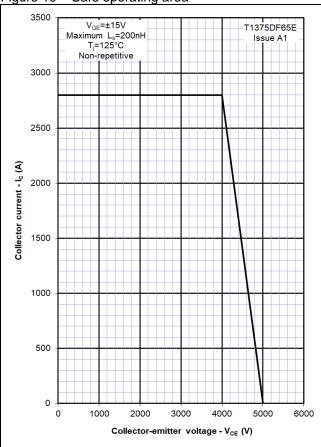
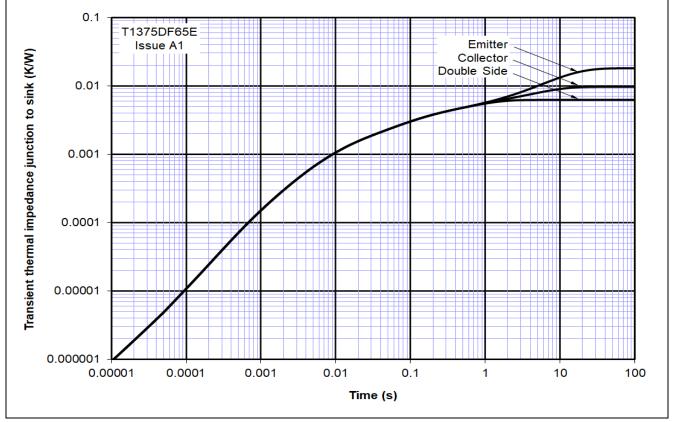
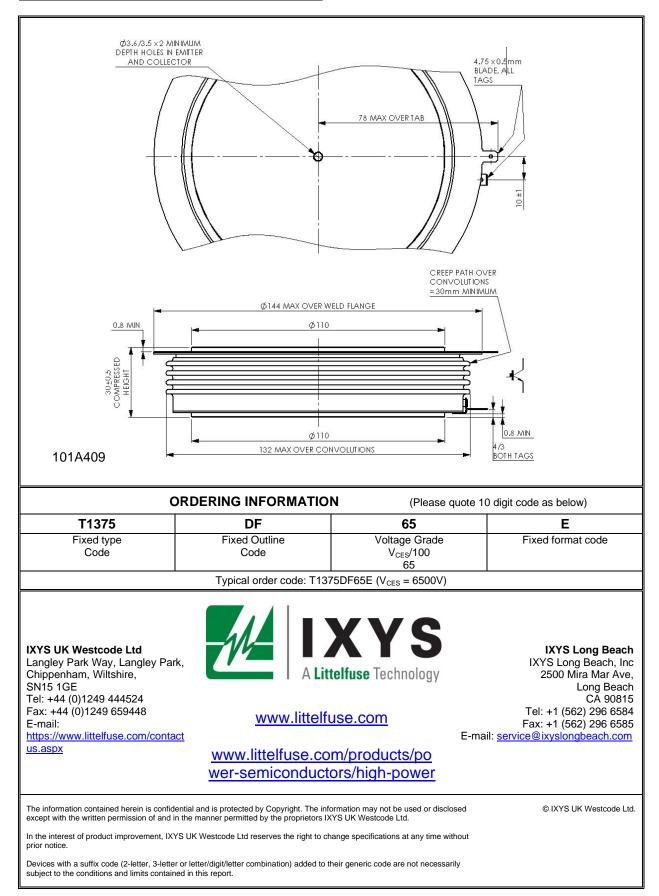




Figure 11 – Transient thermal impedance

Outline Drawing & Ordering Information

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics