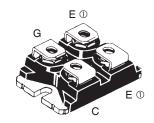
GenX3[™] 1200V IGBT w/ Diode


IXGN82N120C3H1

High-Speed PT IGBT for 20-50 kHz Switching

V _{CES}	=	1200V
C110	=	58A
V _{CE(sat)}	≤	3.9V

SOT-227B, miniBLOC €153432

G = Gate, C = Collector, E = Emitter

① either emitter terminal can be used as
Main or Kelvin Emitter

F	ea	ıtu	re	S

- Optimized for Low Switching Losses
- Square RBSOA
- High Current Capability
- Isolation Voltage 2500 V~
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- SMPS
- PFC Circuits
- Welding Machines
- Lamp Ballasts

Symbol	Test Conditions	Maximum F	Ratings	
V _{CES}	T _J = 25°C to 15	0°C	1200	V
V _{CGR}	$T_J = 25^{\circ}C$ to 15	0° C, $R_{GE} = 1M\Omega$	1200	V
V _{GES}	Continuous		±20	V
V _{GEM}	Transient		±30	V
I _{C25}	T _c = 25°C		130	A
I _{C110}	$T_{c} = 110^{\circ}C$		58	Α
I _{F110}	$T_{c}^{\circ} = 110^{\circ}C$		42	Α
I _{CM}	$T_{c} = 25^{\circ}C$, 1ms		500	Α
SSOA	V _{GE} = 15V, T _{VJ} =	125°C, R _G = 3Ω	I _{CM} = 164	A
(RBSOA)	Clamped Inductive Load		$V_{CE} \le V_{CES}$	
P _c	T _C = 25°C		595	W
T			-55 +150	°C
T_{JM}			150	°C
T _{stg}			-55 +150	°C
V _{ISOL}	50/60Hz	t = 1min	2500	V~
	$I_{ISOL} \leq 1 mA$	t = 1s	3000	V~
M _d	Mounting Torque	е	1.5/13	Nm/lb.in.
4	Terminal Connec	ction Torque	1.3/11.5	Nm/lb.in.
Weight			30	g

			teristic Values Typ. Max.		
V _{GE(th)}	$I_{\rm C}=1{\rm mA},V_{\rm CE}=V_{\rm GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V, \text{ Note 1}$ $T_{J} = 125^{\circ}\text{C}$			50 6	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±200	nA
V _{CE(sat)}	I _C = 82A, V _{GE} = 15V, Note 2		3.3	3.9	V

Symbol				
$(T_J = 25^{\circ}C, l)$	Unless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}	$I_{\rm C}=60$ A, $V_{\rm CE}=10$ V, Note 2	38	62	S
C _{ies}			7900	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		685	pF
C _{res}			197	pF
Q _{g(on)}			340	nC
\mathbf{Q}_{ge}	$I_{\rm C}$ = 82A, $V_{\rm GE}$ = 15V, $V_{\rm CE}$ = 0.5 • $V_{\rm CES}$		55	nC
Q _{gc}			145	nC
t _{d(on)}			30	ns
t _{ri}	Inductive load, T _J = 25°C		77	ns
E _{on}	$I_{\rm C} = 82A, V_{\rm GE} = 15V$		5.0	mJ
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_{G} = 2\Omega$		194	ns
t _{fi}	Note 3		100	ns
E _{off}			2.5	5.0 mJ
t _{d(on)}			32	ns
t _{ri}	Inductive load, T _J = 125°C		80	ns
E _{on}	$I_{\rm C}=82A,V_{\rm GE}=15V$		6.8	mJ
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_{G} = 2\Omega$		230	ns
t _{fi}	Note 3		270	ns
E _{off}			4.0	mJ
R _{thJC}				0.21 °C/W
R _{thCK}			0.05	°C/W

SOT-227B miniBLOC (IXGN) INCHES MIN MAX 31.88 8.20 4.29 MAX 1.240 .307 31.50 7.80 4.09 .161 .161 4.09 .169 4.09 14.91 30.12 38.00 11.68 8.92 1.186 1.496 .460 .481 9.60

.496 .990 .078

.195

1.045

1.001 .084

.235 1.059

.004

0.84

26.90 4.42 4.85 25.07

12.60 25.15 1.98

4.95

26.54 3.94

-0.05

Reverse Diode (FRED)

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)			Char Min.	acteristic Typ.	Values Max.	
V_	$I_{\rm F} = 60A, V_{\rm GF} = 0V, \text{ Note 1}$				2.5	V
•	i de	$T_J = 150^{\circ}C$		1.4	1.8	V
I _{RM}	$\begin{cases} I_{F} = 60A, V_{GE} = 0V, \\ -di_{F}/dt = 200A/\mu s, V_{R} = 300V \end{cases}$	T _J = 100°C		8.3		Α
t _{rr}	\int -di _F /dt = 200A/µs, V _R = 300V			140		ns
R _{thJC}					0.42 °C	C/W

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CF}(Clamp)$, T_{I} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

