

Pin Out

Description

Designed primarily for ac power switching. The gate sensitivity of these triacs permits the use of economical transistorized or integrated circuit control circuits, and it enhances their use in low-power phase control and loadswitching applications.

Features

- Very High Gate Sensitivity
 - Pb–Free Package is
 Available

Po

- Low On-State Voltage at High Current Levels
- Glass-Passivated Chip for Stability
- Small, Rugged Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability

Functional Diagram

Maximum Ratings ($T_J = 25^{\circ}C$ unless otherwise noted)					
Rating	Symbol	Value	Unit		
Peak Repetitive Off-State Voltage (Note 1) $(T_j = 25 \text{ to } 110^\circ\text{C}, \text{ Gate Open})$	V _{drm} , V _{rrm}	200	V		
On-State RMS Current (T_c = 70°C)(Full Cycle Sine Wave 50 to 60 Hz)	I _{T (RMS)}	2.5	А		
Peak Non–Repetitive Surge Current (One Full Cycle, Sine Wave 60 Hz, T _c = 70°C)	I _{TSM}	25	А		
Circuit Fusing Considerations (t = 8.3 ms)	l²t	2.6	A2s		
Peak Gate Power (Pulse Width \leq 10 sec, T _c = 70°C)	P _{GM}	10	W		
Average Gate Power (t = 8.3 msec, $T_A = 25^{\circ}C$)	P _{GM (AV)}	0.5	W		
Peak Gate Current (Pulse Width = 10 μ s, T _c = 70°C)	I _{GM}	0.5	А		
Operating Junction Temperature Range @ Rated $V_{_{RRM}}$ and $V_{_{DRM}}$	TJ	-40 to +110	°C		
Storage Temperature Range	T _{stg}	-40 to +150	°C		
Mounting Torque (6-32 Screw) (Note 2)	_	8.0	in. lb.		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

Normanded Operating Conditions may affect device reliability.
V_{new} and V_{anw} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
Zorque rating applies with use of torque washer (Shakeproof WD19523 or equivalent). Mounting Torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heat-sink contact pad

are common.

Thermal Characteristics

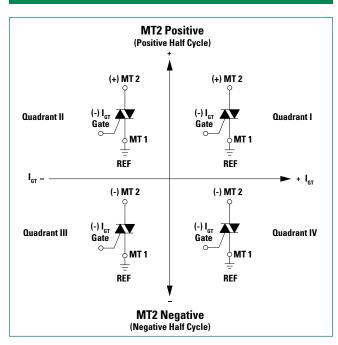
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient PCB Mounted	R _{eJA}	3.5	°C/W
Thermal Resistance, Junction–to–Tab Measured on MT2 Tab Adjacent to Epoxy	R _{ejt}	60	°C/W
Maximum Device Temperature for Soldering Purposes for 10 Secs Maximum	TL	260	°C

Electrical Characteristics - **OFF** ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T_ = 25°C	I _{DRM} ,	-	-	1.0	~^^
(V_{D} = Rated V_{DRM} and V_{RRM} ; Gate Open)	T_ = 110°C	I	-	0.2	0.75	mA

Electrical Characteristics - **ON** ($T_J = 25^{\circ}$ C unless otherwise noted; Electricals apply in both directions)

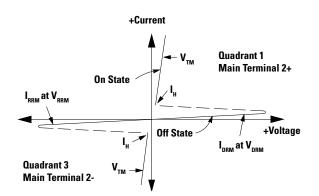
Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On-State Voltage (Note 3) ($I_{TM} = \pm 10 \text{ A}$)	V _{TM}	_	1.7	2.2	V
Gate Trigger Current (Continuous dc) ($V_D = 12$ V, $R_L = 100 \Omega$, All Quadrants)	I _{gt}	_	_	10	mA
Gate Trigger Voltage (Continuous dc) ($V_{\rm D}$ = 12 Vdc, R _L = 100 Ω , T _c = 25°C)	V _{gt}	-	1.0	2.2	V
Gate Non-Trigger Voltage ($V_p = 12 \text{ Vdc}, R_L = 100 \Omega, T_c = 110^{\circ}\text{C}$)	V _{gD}	0.15	_	_	V
Holding Current (VD = 12 V, IT (Initiating Current) = ±200 mA, Gate Open)	I _H	_	15	30	mA
Gate Controlled Turn-On Time ($V_{\rm D}$ = Rated $V_{\rm DRM}$, $I_{\rm TM}$ = 10 A pk, $I_{\rm G}$ = 60 mA, tr = 0.1 sec)	t _{gt}	_	1.8	2.5	μs



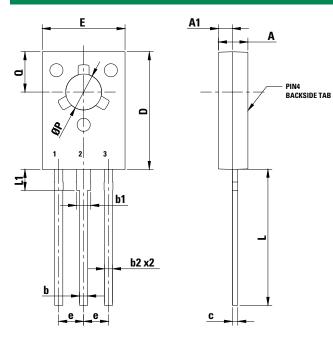
Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Мах	Unit
Critical Rate-of-Rise of Off State Voltage (V_{D} = Rated V_{DRM} , Exponential Waveform, T_{C} = 100°C)		10	100	-	V/µs
Critical Rate of Rise of On–State Current (V _D = Rated V _{DRM} , I _{TM} = 3.5 A pk, Commutating di/dt = 1.26 A/ms, Gate Unenergized, T _C = 90°C)	di/dt	1.0	4.0	-	A/µs

2. Pulse Width =1.0 ms, Duty Cycle \leq 1%.

Voltage Current Characteristic of SCR


Symbol	Parameter	
V _{DRM}	Peak Repetitive Forward Off State Voltage	
I	Peak Forward Blocking Current	
V _{RRM}	Peak Repetitive Reverse Off State Voltage	
I	Peak Reverse Blocking Current	
V _{TM}	Maximum On State Voltage	
I _H	Holding Current	

Quadrant Definitions for a Triac


All Polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used

Dimensions

Part Marking System

T0-225AA Case 077 Style 2

Y =Year WW =Wor Week T2322BA =Device Code G =Pb-Free Package

1. Cathode

2. Anode

3. Gate

Pin Assignment			
1 Cathode			
2	Anode		
3	Gate		
4	Anode		

Dim	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.102	0.110	2.60	2.80
A1	0.047	0.055	1.20	1.40
b	0.028	0.034	0.70	0.86
b2	0.028	0.034	0.70	0.86
с	0.019	0.022	0.49	0.57
D	0.417	0.449	10.60	11.40
E	0.291	0.323	7.40	8.20
е	0.090 TYP		2.29 TYP	
L	0.551	0.630	14.00	16.00
L1	0.091	0.106	2.30	2.70
Р	0.118	0.134	3.00	3.40
Q	0.142	0.157	3.60	4.00
b1	0.047	0.055	1.2	1.4

Ordering Information				
Device	Package	Shipping		
T2322B	TO225AA			
T2322BG	TO225AA (Pb-Free)	500 Units/Box		

Dimensioning and Tolerancing Per ANSI Y14.5M, 1982.
 Controlling Dimension: Inch.
 077-01 Thru -08 Obsolete, New Standard 077-09.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.