

Date: 27th January 2023

Data Sheet Issue: 2

Medium Voltage Thyristor Type K0443L#600 to K0443L#650

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)	6000-6500	V
V _{DSM}	Non-repetitive peak off-state voltage, (note 1)	6000-6500	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)	6000-6500	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	6100-6600	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS	
I _{T(AV)M}	Maximum average on-state current, T _{sink} =55°C, (no	te 2)	443	А
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (no	te 2)	286	Α
I _{T(AV)M}	Maximum average on-state current. T _{sink} =85°C, (no	te 3)	178	Α
I _{T(RMS)}	Nominal RMS on-state current, T _{sink} =25°C, (note 2)		890	Α
I _{T(d.c.)}	D.C. on-state current, T _{sink} =25°C, (note 4)	801	А	
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{rm} =60%V _{RRM} ,	4800	Α	
I _{TSM2}	Peak non-repetitive surge t _p =10ms, V _{rm} ≤10V, (note	5300	Α	
l ² t	I^2t capacity for fusing t_p =10ms, V_{rm} =60% V_{RRM} , (note	115×10 ³	A ² s	
l ² t	I ² t capacity for fusing t _p =10ms, V _{rm} ≤10V, (note 5)		140×10 ³	A ² s
(al: / al±)	Critical rate of rice of an etata accuracy	repetitive, 50Hz, 60s	150	A/µs
(di/dt) _{cr}	Critical rate of rise of on-state current	non-repetitive	300	A/µs
V_{RGM}	Peak reverse gate voltage	5	V	
P _{G(AV)}	Mean forward gate power	2	W	
P _{GM}	Peak forward gate power	30	W	
T _{j op}	Operating temperature range	-40 to +115	°C	
T _{stg}	Storage temperature range		-40 to +150	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_i below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, $115^{\circ}C$ T_j initial.
- 6) $V_D=67\%$ V_{DRM} , $I_{FG}=2A$, $t_r \le 0.5 \mu s$, $T_{case}=115^{\circ}C$.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	2.80	I _{TM} =500A	V
Vтм	Maximum peak on-state voltage	-	-	4.83	I _{TM} =1350A	V
V _{T0}	Threshold voltage	-	-	1.568		V
r⊤	Slope resistance	-	-	2.428		mΩ
(dv/dt)cr	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM} , linear ramp, gate o/c	V/µs
I _{DRM}	Peak off-state current	-	-	50	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	50	Rated V _{RRM}	mA
V_{tr}	On-state recovery voltage	-	9.0	-	$I_T=2\times I_{T(AV)M}$, $t_p=10ms$, $T_{case}=25^{\circ}C$	V
V _{GT}	Gate trigger voltage	-	-	3.0	T 25°C V 40V I 24	V
lgт	Gate trigger current	-	-	300	T _j =25°C. V _D =10V, I _T =3A	mA
V_{GD}	Gate non-trigger voltage	-	-	0.25	Rated V _{DRM}	V
lн	Holding current	-	-	1000	T _j =25°C	mA
t _{gd}	Gate-controlled turn-on delay time	-	0.6	1.2	V _D =67% V _{DRM} , I _T =1000A, di/dt=10A/µs,	μs
t gt	Turn-on time	-	6.0	9.0	$I_{FG}=2A$, $t_r=0.5\mu s$, $T_j=25^{\circ}C$	μs
Qrr	Recovered charge	-	3100	3875		μC
Qra	Recovered charge, 50% chord	-	2100	-	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	-	130	-	V _r =50V	Α
t _{rr}	Reverse recovery time, 50% chord	-	30	-		μs
	Turn-off time	-	800	-	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs, V _r =50V, V _{dr} =33%V _{DRM} , dV _{dr} /dt=20V/μs	
tq	Turn-on time	-	1100	-	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs, V _r =50V, V _{dr} =33%V _{DRM} , dV _{dr} /dt=200V/μs	— µs
D	Thermal registance, junction to heatsink	-	-	0.032	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.064	Single side cooled	K/W
F	Mounting force	10	-	20		kN
Wt	Weight	-	340	-		g

Notes:-

- Unless otherwise indicated T_j=115°C.
 For other clamp forces consult factory.

Notes on Ratings and Characteristics

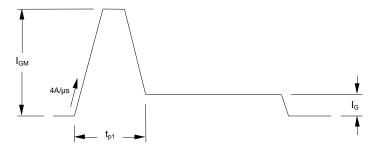
1.0 Voltage Grade Table

Voltage Grade	V _{DRM} V _{DSM} V _{RRM} V	V _{RSM} V	V _D V _R DC V
60	6000	6100	3000
65	6500	6600	3250

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor


A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Gate Drive

The nominal requirement for a typical gate drive is illustrated below. An open circuit voltage of at least 30V is assumed. This gate drive must be applied when using the full di/dt capability of the device.

The magnitude of I_{GM} should be between five and ten times I_{GT} , which is shown on page 2. Its duration (t_{p1}) should be 20µs or sufficient to allow the anode current to reach ten times I_L , whichever is greater. Otherwise, an increase in pulse current could be needed to supply the necessary charge to trigger. The 'back-porch' current I_G should remain flowing for the same duration as the anode current and have a magnitude in the order of 1.5 times I_{GT} .

6.0 Frequency Ratings

The curves illustrated in figures 17 & 18 are for guidance only and are superseded by the maximum ratings shown on page 1. For operation above line frequency, please consult the factory for assistance.

7.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 300A/µs at any time during turnon on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 150A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

8.0 Square wave frequency ratings

These ratings are given for load component rate of rise of on-state current of 50A/µs.

9.0 Computer Modelling Parameters

9.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot ff^2 \cdot r_T \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T} \qquad \text{and:} \qquad W_{AV} = \frac{\Delta T}{R_{th}} \\ \Delta T = T_{j \max} - T_{Hs}$$

Where $V_{T0}=1.568V$, $r_{T}=2.428m\Omega$,

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.0480	0.0436	0.0413	0.0388	0.0360	0.0345	0.0320
Square wave Single Side Cooled	0.0790	0.0769	0.0740	0.0716	0.0688	0.0665	0.0640
Sine wave Double Side Cooled	0.0415	0.0394	0.0378	0.0355	0.0320		
Sine wave Single Side Cooled	0.0735	0.0718	0.0701	0.0679	0.0640		

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

9.2 D.C. Thermal Impedance Calculation

$$r_{t} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

 r_{t} = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

The coefficients for this device are shown in the tables below:

D.C. Double Side Cooled							
Term 1 2 3 4							
r_p	0.01771901	4.240625×10 ⁻³	6.963806×10 ⁻³	3.043661×10 ⁻³			
$ au_{\mathcal{P}}$	0.7085781	0.1435833	0.03615196	2.130842×10 ⁻³			

	D.C. Single Side Cooled						
Term	1	2	3	4	5		
r_p	0.03947164	0.01022837	8.789912×10 ⁻³	4.235162×10 ⁻³	1.907609×10 ⁻³		
$ au_{\mathcal{P}}$	4.090062	1.078983	0.08530917	0.01128791	1.240861×10 ⁻³		

9.3 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for the hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients			115°C Coefficients
Α	0.2103143	Α	-0.8731799
В	0.4754865	В	0.650089
С	2.581886×10 ⁻³	С	3.072624×10 ⁻³
D	-0.09062255	D	-0.08511282

10.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

11.0 Reverse recovery ratings

- (i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1
- (ii) Q_{rr} is based on a 150 μ s integration time i.e.

$$Q_{rr} = \int_{0}^{150\mu s} i_{rr}.dt$$

(iii)
$$K Factor = \frac{t_1}{t_2}$$

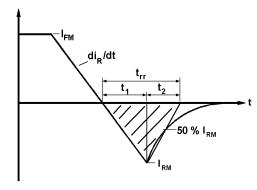


Fig. 1

12.0 Duty cycle lines

The 100% duty cycle is represented on the frequency ratings by a straight line. Other duties can be included as parallel to the first.

Curves

Figure 1 – On-state characteristics of Limit device

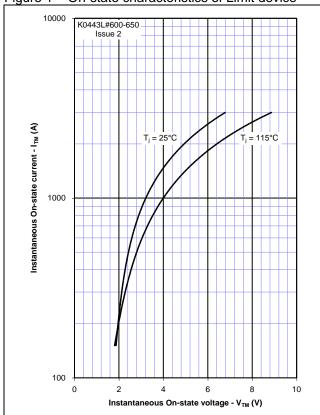


Figure 2 – Transient thermal impedance

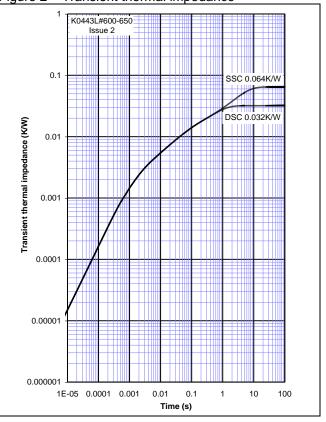


Figure 3 – Gate characteristics – Trigger limits

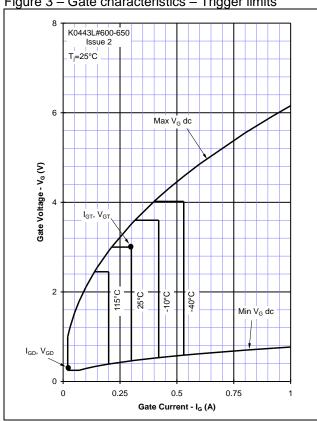
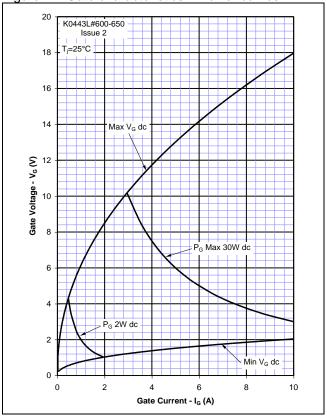
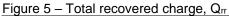




Figure 4 - Gate characteristics - Power curves

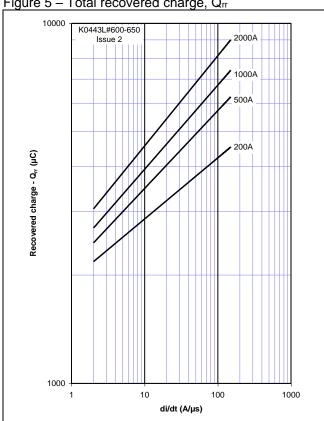


Figure 6 – Recovered charge, Q_{ra} (50% chord)

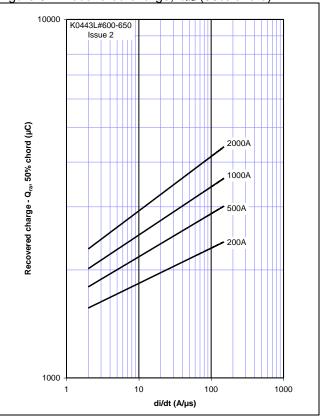


Figure 7 - Peak reverse recovery current, Irm

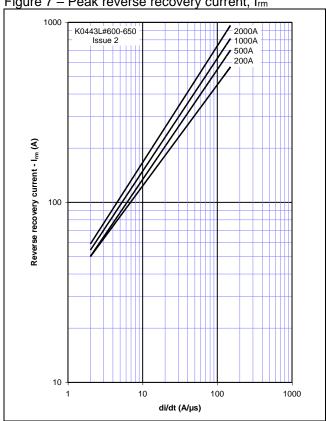


Figure 8 – Maximum recovery time, t_{rr} (50% chord)

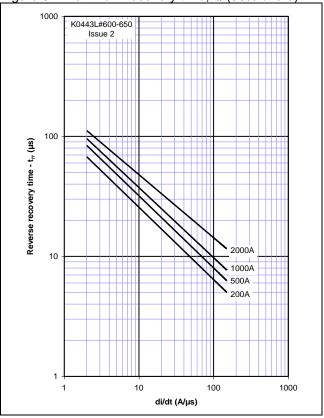


Figure 9 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

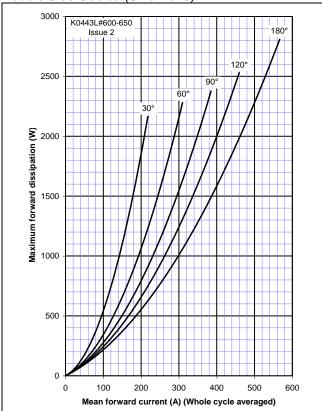


Figure 11 – On-state current vs. Power dissipation – Double Side Cooled (Square wave)

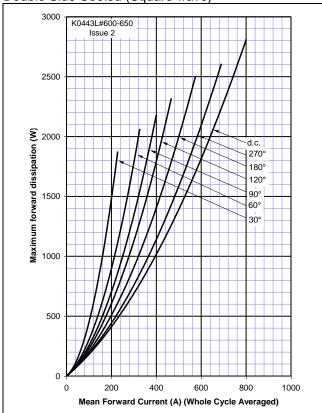


Figure 10 – On-state current vs. Heatsink temperature – Double Side Cooled (Sine wave)

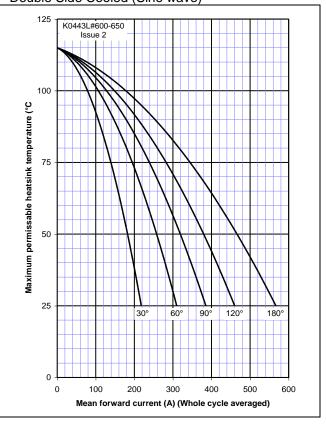


Figure 12 – On-state current vs. Heatsink temperature – Double Side Cooled (Square wave)

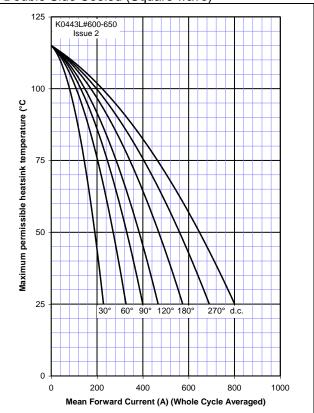


Figure 13 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

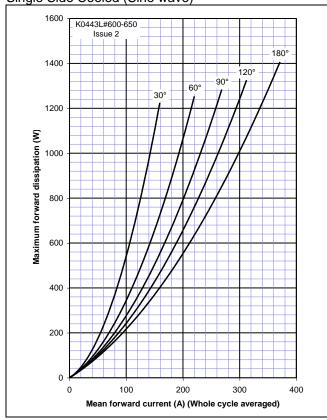


Figure 15 – On-state current vs. Power dissipation – Single Side Cooled (Square wave)

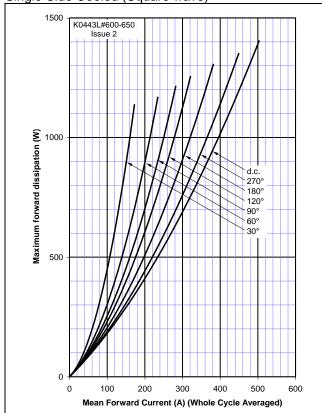


Figure 14 – On-state current vs. Heatsink temperature – Single Side Cooled (Sine wave)

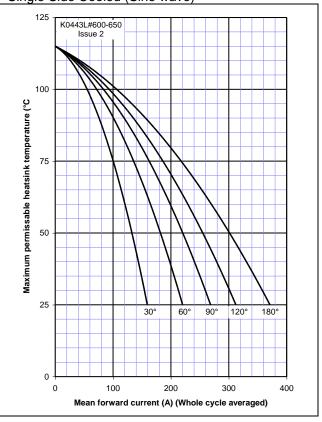
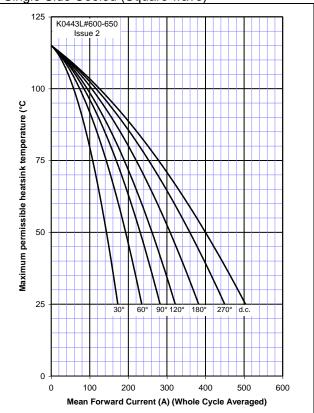
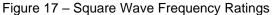




Figure 16 – On-state current vs. Heatsink temperature – Single Side Cooled (Square wave)

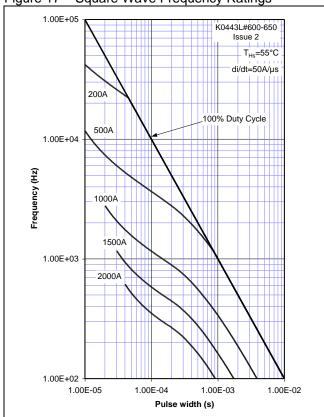
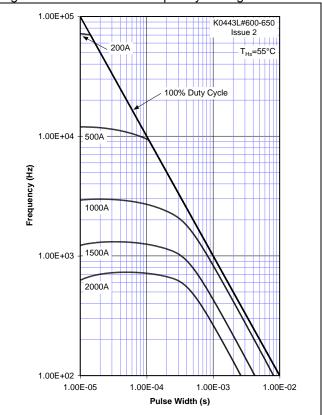
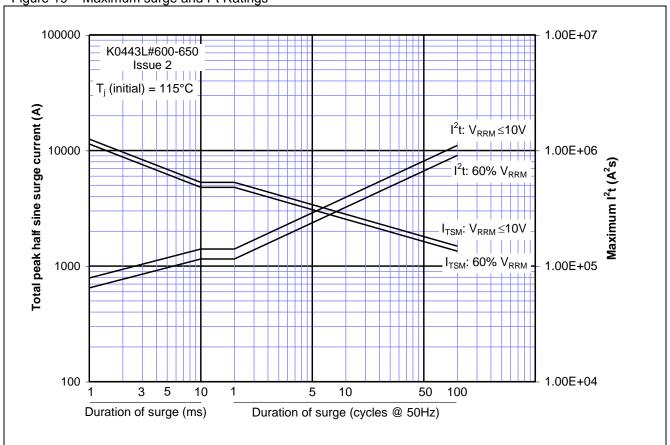
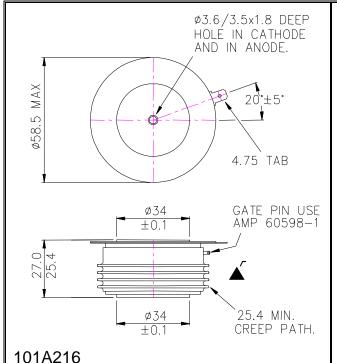
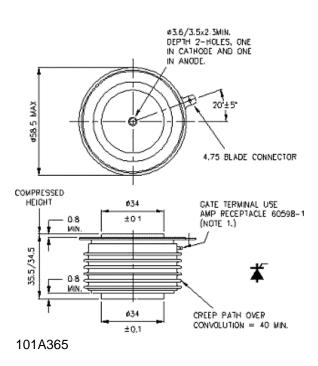


Figure 18 – Sine Wave Frequency Ratings


Figure 19 – Maximum surge and I²t Ratings

Outline Drawing & Ordering Information

ORDERING INFORMATION

(Please quote 10 digit code as below)

K0443	L#	**	0
Fixed Type Code	Outline code LC = 26mm clamp height LG = 35mm clamp height	Voltage code V _{RRM} /100 60 -65	Fixed code

Typical order code: K0443LC600 - 6000V V_{DRM}, V_{RRM}, 27mm clamp height capsule.

IXYS UK Westcode Ltd

Langley Park Way, Langley Park, Chippenham, Wiltshire, SN15 1GE Tel: +44 (0)1249 444524 Fax: +44 (0)1249 659448

E-mail:

www.littelfuse.com/contactus.aspx

IXYS Long Beach

IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach CA 90815

Tel: +1 (562) 296 6584 Fax: +1 (562) 296 6585 E-mail:

powerstacksus@littelfuse.com

www.littelfuse.com

https://www.littelfuse.com/products/power-semiconductors/high-power.aspx

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

© IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without prior notice

Devices with a suffix code (2-letter, 3-letter, or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.