SiC Schottky Diode

$\mathrm{V}_{\text {RRM }}=650 \mathrm{~V}$
$\mathrm{I}_{\mathrm{FAV}}=2 \mathrm{x} 80 \mathrm{~A}$

Ultra fast switching

Zero reverse recovery

Part number
DCG160X650NA

Features / Advantages:

- Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient of forward voltage
- $\mathrm{T}_{\text {VJM }}=175^{\circ} \mathrm{C}$

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

Package: SOT-227B (minibloc)

- Isolation Voltage: 2500 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
-Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

SiC Diode				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			650	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			650	V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=175^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$V_{\text {F }}$	forward voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.25 \\ & 1.55 \end{aligned}$	1.85	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=175^{\circ} \mathrm{C}$		$\begin{array}{r} 1.35 \\ 1.9 \end{array}$	2.3	V
$\mathrm{I}_{\text {FAV }}$	average forward current	$\left.\begin{array}{l} \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}\right\} \begin{aligned} & \text { rectangular } \\ & \mathrm{d}=0.5 \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=175^{\circ} \mathrm{C}$			80	A
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F} 25} \\ & \mathrm{I}_{\mathrm{F} 80} \\ & \mathrm{I}_{\mathrm{F} 100} \\ & \hline \end{aligned}$	forward current	based on typ. $\mathrm{V}_{\mathrm{F} 0}$ and r_{F}	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 134 \\ 101 \\ 87 \end{array}$	A
$\mathrm{I}_{\text {FSM }}$	max forward surge current	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \text {, half sine }(50 \mathrm{~Hz}) \\ & \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}, \text { pulse; } \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			$\begin{array}{r} 650 \\ 3200 \end{array}$	A
$\begin{aligned} & V_{F 0} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$	threshold voltage slope resistance	for power loss calculation	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \\ & 175^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \\ & 175^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 0.83 \\ 0.77 \\ 9.5 \\ 11.3 \end{array}$		V V $m \Omega$ $m \Omega$
Q_{c}	total capacitive charge	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$		220		nC
C	total capacitance	$\left.\begin{array}{l} V_{R}=0 V \\ V_{R}=200 \mathrm{~V} \\ V_{R}=400 \mathrm{~V} \end{array} \quad\right\} f=1$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		$\begin{array}{r} 3950 \\ 400 \\ 360 \\ \hline \end{array}$		pF pF pF
$\begin{aligned} & \mathbf{R}_{\mathrm{thJC}} \\ & \mathbf{R}_{\mathrm{thJH}} \\ & \hline \end{aligned}$	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS	setup		0.62	0.49	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Package	Outlines SOT-227B (minibloc)			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current	per terminal				100	A
$\begin{aligned} & \hline \mathbf{T}_{\text {stg }} \\ & \mathrm{T}_{\mathrm{op}} \\ & \mathrm{~T}_{\mathrm{vJ}} \end{aligned}$	storage temperature operation temperature virtual junction temperature			$\begin{aligned} & -40 \\ & -40 \\ & -40 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \\ & 175 \end{aligned}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
Weight					30		g
$M_{\text {D }}$	mounting torque ${ }^{17}$	screws to heatsink terminal connection scre				$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	Nm Nm
$\begin{aligned} & \mathbf{d}_{\mathrm{spp}} \\ & \mathbf{d}_{\mathrm{spb}} \\ & \hline \end{aligned}$	creepage distance on surface	terminal to terminal terminal to backside		$\begin{array}{r} 10.5 \\ 8.5 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\begin{aligned} & \mathbf{d}_{\mathrm{App}} \\ & \mathbf{d}_{\mathrm{Apb}} \\ & \hline \end{aligned}$	striking distance through air	terminal to terminal terminal to backside		$\begin{aligned} & 3.2 \\ & 6.8 \end{aligned}$			mm mm
$\mathrm{V}_{\text {ISOL }}$	isolation voltage	$\mathrm{I}_{\text {ISol }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$	$\begin{aligned} & \mathrm{t}=1 \mathrm{sec} . \\ & \mathrm{t}=1 \text { minute } \end{aligned}$	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$			V
C_{P}	coupling capacity per switch	between shorted terminal and back side metallizati	e diode		20		pF

${ }^{1)}$ further information see application note IXAN0073 on
www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)

Product Marking

Part description

D = Diode
$\mathrm{C}=\mathrm{SiC}$
$G=$ Extreme fast
$160=$ Current Rating [A]
X = Parallel legs
650 = Reverse Voltage [V]
NA = SOT-227 (minibloc)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	DCG160X650NA	DCG160X650NA	Tube	10	DCG160X650NA

Equivalent Circuits for Simulation *on die level				
	$\mathrm{R}_{0}-$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{vj}}=175^{\circ} \mathrm{C}$	
$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.83	0.77	V
$\mathrm{R}_{0 \text { max }}$	slope resistance *	9.5	11.3	$\mathrm{m} \Omega$

Outlines SOT-227B (minibloc)

Dim	Millimeter		Inches	
	min	max	min	max
A	31.50	31.88	1.240	1.255
日	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

SiC Diode (per leg)

Fig. 1 Typ. forward characteristics

Fig. 3 Typ. current derating

Fig. 5 Typ. recovery charge vs. reverse voltage

Fig. 2 Typ. reverse characteristics

Fig. 4 Power derating

Fig. 6 Typ. junction capacitance vs. reverse Voltage

SiC Diode (per leg)

Fig. 7 Typ. transient thermal impedance

