Advance Technical Information

High Voltage IGBT

IXGH24N170
IXGT24N170

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1700	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\text {GE }}=1 \mathrm{M} \Omega$	1700	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	24	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	150	A
SSOA	$V_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=5 \Omega$	$\mathrm{I}_{\text {CM }}=50$	A
(RBSOA)	Clamped inductive load	@ $0.8 \cdot \mathrm{~V}_{\text {CES }}$	
$t_{\text {sc }}$	$\mathrm{V}_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CE}}=1000 \mathrm{~V}$	10	$\mu \mathrm{s}$
(SCSOA)	$\mathrm{R}_{\mathrm{G}}=5 \Omega$, non repetitive		
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	250	W
TJ		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 ... +150	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SoLD }}$	Plastic body for 10 seconds	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (TO-247)	1.13/10	Nm/lb.in.
Weight	TO-247	6	g
	TO-268	4	g

Symbol Test Conditions

TO-247 (IXGH)

TO-268 (IXGT)

$G=$ Gate $\quad C \quad$ Collector
$\mathrm{E}=$ Emitter $\mathrm{TAB}=$ Collector

Features

- International standard packages JEDEC TO-268 and JEDEC TO-247 AD
- High current handling capability
- MOS Gate turn-on
- drive simplicity
- Rugged NPT structure
- Molding epoxies meet UL 94V-0 flammability classification

Applications

- Capacitor discharge \& pulser circuits
- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Advantages

- High power density
- Suitable for surface mounting
- Easy to mount with 1 screw, (isolated mounting screw hole)

Symbol Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)		Characteristic Values			
		Min.	Typ.	Max.	
g_{fs}	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$, Note 1	18	25		S
$\mathrm{I}_{\mathrm{c}(\mathrm{ON})}$	$V_{C E}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=10 \mathrm{~V}$		100		A
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\} V_{C E}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 2400 \\ 120 \\ 33 \end{array}$		pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\} I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \cdot \mathrm{~V}_{\mathrm{CES}}$		$\begin{array}{r} 106 \\ 18 \\ 32 \end{array}$		nC nC nC
$\begin{aligned} & t_{d(o n)} \\ & t_{\mathrm{ri}} \\ & t_{\mathrm{d}(\text { (ff) }} \\ & t_{\text {fi }} \\ & E_{\text {off }} \\ & \hline \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 25}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=5 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}		$\begin{array}{r} 42 \\ 39 \\ 200 \\ 250 \\ 8 \end{array}$	$\begin{array}{r} 400 \\ 500 \\ 12 \end{array}$	
$\begin{aligned} & t_{d(o n)} \\ & t_{\mathrm{ri}} \\ & E_{\mathrm{on}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\mathrm{fi}} \\ & E_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C 25}, V_{G E}=15 \mathrm{~V} \\ & V_{C E}=0.8 \cdot V_{C E S}, R_{G}=R_{o f f}=5 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}$ (Clamp) $>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}		$\begin{array}{r} 50 \\ 55 \\ 2.0 \\ 200 \\ 360 \\ 12 \end{array}$		ns ns mJ ns ns mJ
$\begin{aligned} & \hline \mathbf{R}_{\mathrm{th} \mathrm{sc}} \\ & \mathbf{R}_{\mathrm{thcs}} \\ & \hline \end{aligned}$	(TO-247)		0.25	0.50	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

Min Recommended Footprint

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

