IGBT
IXGA 20N120 IXGP 20N120

Symbol Test Conditions ($T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified)		Characteristic Values			
		Min.	Typ.	Max.	
$\mathrm{BV}_{\text {ces }}$	$\mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	1200			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {GE }}$	2.5		5.0	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		250	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		1	mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {cElsat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {c90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$		2.0	2.5	V

TO-220AB (IXGP)

TO-263 AA (IXGA)

Features

- International standard packages JEDEC TO-220AB and TO-263AA
- High current handling capability
- MOS Gate turn-on
- drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies
- Capacitor discharge

Advantages

- Easy to mount with one screw
- Reduces assembly time and cost
- High power density

IXGA 20N120 IXGP $20 N 120$

Symbol \quad Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)		Characteristic Values			
		Min.	Typ.		
$\mathrm{g}_{\text {Is }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{cg}} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \\ & \text { Pulse test, } \mathrm{t} \leq 300 \mu \mathrm{~s}, \text { duty cycle } \leq 2 \% \\ & \hline \end{aligned}$	12	16		S
$\mathrm{C}_{\text {ies }}$			1750		pF
$\mathrm{C}_{\text {oes }}$	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		90		pF
$\mathrm{C}_{\text {res }}$			31		pF
$\mathrm{I}_{\text {cIow }}$	$\mathrm{V}_{\mathrm{GE}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		90		A
\mathbf{Q}_{g}			63		nC
Q_{ge}	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {C90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{~V}_{\text {CES }}$		13		nC
Q_{gc}			26		nC
$\mathrm{t}_{\text {don) }}$	Inductive load, $\mathrm{T}_{\mathbf{j}}=25^{\circ} \mathrm{C}$		28		ns
t_{ri}	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {C90 }}, \mathrm{V}_{\text {GE }}=15 \mathrm{~V}$		20		ns
$\mathrm{t}_{\text {dafl }}$	$\mathrm{V}_{\text {CE }}=800 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\text {off }}=47 \Omega$		400	800	ns
$\mathrm{tif}_{\text {fin }}$	Remarks: Switching times may		380	700	ns
$\mathrm{E}_{\text {off }}$	increase for $\mathrm{V}_{\text {CE }}$ (Clamp) $>0.8 \mathrm{~V}_{\text {CES }}$, higher $T_{\text {, }}$ or increased R_{G}		6.5		mJ
$\mathrm{t}_{\text {d(0n) }}$			30		ns
$\mathrm{t}_{\text {ri }}$			27		ns
$\mathrm{E}_{\text {on }}$	$\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{Co0}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$		0.90		m
$\mathrm{t}_{\text {dofofl }}$	Remarks: Switching times may		700		ns
$\mathrm{tif}_{\text {fi }}$	increase for $\mathrm{V}_{\text {CE }}$ (Clamp) $>0.8 \mathrm{~V}_{\text {CES }}$,		550		ns
$\mathrm{E}_{\text {off }}$	higher T_{J} or increased R_{G}		9.5		mJ
$\mathrm{R}_{\text {tusc }}$				0.83	KW
$\underline{\mathbf{R t r c k}^{\text {fr }}}$	TO-220		0.5		KW

Min. Recommended Footprint (Dimensions in inches and mm)

TO-220 AB Dimensions

TO-263 AA Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.06	4.83	.160	.190
A1	2.03	2.79	.080	.110
b	0.51	0.99	.020	.039
b2	1.14	1.40	.045	.055
C	0.46	0.74	.018	.029
C2	1.14	1.40	.045	.055
D	8.64	9.65	.340	.380
D1	7.11	8.13	.280	.320
E	9.65	10.29	.380	.405
E1	6.86	8.13	.270	.320
e	2.54	BSC	.100	BSC
L	14.61	15.88	.575	.625
L1	2.29	2.79	.090	.110
L2	1.02	1.40	.040	.055
L3	1.27	1.78	.050	.070
L4	0	0.38	0	.015
R	0.46	0.74	.018	.029

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

