GenX3 ${ }^{\text {TM }} 1400 \mathrm{~V}$ IGBTs IXGH20N140C3H1 w/ Diode

High-Speed PT IGBTs
for 20-50 kHz Switching

TO-247 (IXGH)

Symbol	Test Conditions	Maximum	tings
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1400	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1400	V
$V_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	42	A
$\mathrm{I}_{\mathrm{C} 100}$	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	20	A
I_{CM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	108	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	20	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	400	mJ
SSOA	$\mathrm{V}_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=5 \Omega$	$\mathrm{I}_{\mathrm{CM}}=40$	A
(RBSOA)	Clamped Inductive Load	$\mathrm{V}_{\mathrm{CE}} \leq \mathrm{V}_{\text {CES }}$	
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	250	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from Case for 10s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SoLD }}$	Plastic Body for 10 seconds	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.
Weight	TO-247	6	g
	TO-268	4	g

TO-268 (IXGT)

$\mathrm{G}=$ Gate $\quad \mathrm{C}=$ Collector
$\mathrm{E}=$ Emitter \quad Tab $=$ Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- High Avalanche Capability
- Anti-Parallel Ultra Fast Diode
- International Standard Packages

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- High Frequency Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol Test Conditions
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified)

g_{ts}	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {c100 }}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$, Note 1	10	17	S
$\begin{aligned} & \hline \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 1790 \\ 145 \\ 50 \\ \hline \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 100}, \mathrm{~V}_{\text {GE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \cdot \mathrm{~V}_{\text {CES }}$		88 18 30	nC nc C
	Inductive load, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{C} 100}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \cdot \mathrm{~V}_{\mathrm{CEE}}, \mathrm{R}_{\mathrm{G}}=5 \Omega \end{aligned}$ Note 2		$\begin{array}{r} 19 \\ 12 \\ 1.35 \\ 110 \\ 32 \\ 0.44 \end{array}$	ns mJ ns ns 0.80 mJ
	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 100}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \cdot \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=5 \Omega \end{aligned}$ Note 2		$\begin{array}{r} 22 \\ 13 \\ 2.33 \\ 144 \\ 380 \\ 1.64 \end{array}$	mJ ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{thnc}} \\ & \mathbf{R}_{\mathrm{thnck}} \end{aligned}$	TO-247		0.21	$\begin{array}{r} 0.50^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Reverse Diode (FRED)

Notes:

1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.
2. Switching times \& energy losses may increase for higher $V_{C E}$ (Clamp), T_{J} or R_{G}.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 Outline

Terminals: 1 - Gate 2 - Collector
3 - Emitter

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A_{2}	4.7	5.3	.185	.209
$\mathrm{~A}_{1}$	2.2	2.54	.087	.102
$\mathrm{~A}_{2}$	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
$\mathrm{~b}_{1}$	1.65	2.13	.065	.084
$\mathrm{~b}_{2}$	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L 1		4.50		.177
$\varnothing \mathrm{P}$	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-268 Outline

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

