

GenX3[™] 1400V IGBTs w/ Diode

IXGH20N140C3H1 IXGT20N140C3H1

High-Speed PT IGBTs for 20 - 50 kHz Switching

V _{CES}	=	1400V
C100	=	20A
V _{CE(sat)}	<u><</u>	5.0V
t _{fi(typ)}	=	32ns

TO-247 (IXGH)

G = Gate	C = Collector
E = Emitter	Tab = Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- High Avalanche Capability
- Anti-Parallel Ultra Fast Diode
- International Standard Packages

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- High Frequency Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _{.1} = 25°C to 150°C	1400	V	
V _{CGR}	$T_J^{\circ} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GE} = 1\text{M}\Omega$	1400	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _c = 25°C	42	А	
I _{C100}	$T_{c} = 100^{\circ}C$	20	Α	
I _{CM}	$T_{c} = 25$ °C, 1ms	108	Α	
I _A	T _c = 25°C	20	А	
I _A E _{AS}	$T_{c}^{\circ} = 25^{\circ}C$	400	mJ	
SSOA	$V_{GE} = 15V, T_{J} = 125^{\circ}C, R_{G} = 5\Omega$	I _{CM} = 40	А	
(RBSOA)	Clamped Inductive Load	V _{CE} ≤ V _{CES}		
P _c	T _C = 25°C	250	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	1.6mm (0.062 in.) from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 10 seconds	260	°C	
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.	
Weight	TO-247	6	g	
	TO-268	4	g	

Symbol $(T_J = 25^{\circ}C, l)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.	
V _{GE(th)}	$I_{C} = 250\mu A, V_{CE} = V_{GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			100	μA
	$T_J = 125^{\circ}C$, Note 1			2.0	mΑ
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
$\mathbf{V}_{CE(sat)}$	$I_{\rm C} = I_{\rm C100}, V_{\rm GE} = 15V, \text{ Note 1}$		4.0	5.0	V
	$T_{J} = 125^{\circ}C$		3.5		V

•		teristic Values		
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$I_{\rm C} = I_{\rm C100}, V_{\rm CE} = 10V, \text{ Note 1}$	10	17	S
C _{ies}			1790	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		145	pF
C _{res}			50	pF
$\overline{Q_q}$			88	nC
Q _{ge}	$I_{\rm C} = I_{\rm C100}, \ V_{\rm GE} = 15 \rm V, \ V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		18	nC
			30	nC
t _{d(on)}			19	ns
t _{ri}	Inductive load, T _J = 25°C		12	ns
E _{on}	$I_{\rm C} = I_{\rm C100}, V_{\rm GE} = 15V$		1.35	mJ
t _{d(off)}	$V_{CE} = 0.5 \bullet V_{CES}, R_{G} = 5\Omega$		110	ns
t _{fi}	Note 2		32	ns
E _{off}	Note 2		0.44	0.80 mJ
t _{d(on)}			22	ns
t _{ri}	Inductive load, T _J = 125°C		13	ns
E _{on}	$I_{\rm C} = I_{\rm C100}, V_{\rm GE} = 15V$		2.33	mJ
t _{d(off)}	$V_{CF} = 0.5 \cdot V_{CFS}, R_{G} = 5\Omega$		144	ns
t _{fi}	Note 2		380	ns
E _{off}			1.64	mJ
R _{thJC}				0.50 °C/W
R _{thCK}	TO-247		0.21	°C/W

TO-247 Outline E Q S D H A2 A1 A1 C A1 C

Terminals: 1 - Gate 2 - Collector 3 - Emitter

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

Reverse Diode (FRED)

Symbo (T _J = 25	I Test Conditions °C, Unless Otherwise Specified)	Char Min.	acteristic Typ.	Values Max.
V _F	$I_F = 20A$, $V_{GE} = 0V$, Note 1 $T_J = 125$ °C		2.8	3.0 V V
I _{RM}	$I_F = 20A, V_{GE} = 0V,$		19	A
t _{rr}	$\begin{cases} -di_{F}/dt = 750A/\mu s, V_{R} = 800V \end{cases}$		70	ns
R _{thJC}				0.9 °C/W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher $V_{CE}(Clamp)$, T_{J} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Terminals: 1 - Gate 2 & 4 - Collector 3 - Emitter

MYZ	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
Е	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5.45 BSC	
Н	.736	.752	18.70	19.10
٦	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	.010 BSC		BSC
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

