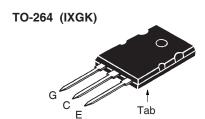
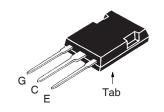


# GenX3<sup>™</sup> 1200V IGBTs w/ Diode

# IXGK55N120A3H1 IXGX55N120A3H1


Ultra-Low-Vsat PT IGBTs for up to 3kHz Switching




| Symbol            | Test Conditions                                                                               | <b>Maximum Ratings</b>   |           |  |
|-------------------|-----------------------------------------------------------------------------------------------|--------------------------|-----------|--|
| V <sub>CES</sub>  | T <sub>J</sub> = 25°C to 150°C                                                                | 1200                     | V         |  |
| V <sub>CGR</sub>  | $T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to 150°C, $R_{_{\mathrm{GE}}} = 1\mathrm{M}\Omega$ | 1200                     | V         |  |
| V <sub>GES</sub>  | Continuous                                                                                    | ±20                      | V         |  |
| V <sub>GEM</sub>  | Transient                                                                                     | ±30                      | V         |  |
| I <sub>C25</sub>  | T <sub>c</sub> = 25°C ( Chip Capability )                                                     | 125                      | A         |  |
| I <sub>C110</sub> | $T_{c} = 110^{\circ}C$                                                                        | 55                       | Α         |  |
| LRMS              | T <sub>C</sub> = 25°C (Lead RMS Limit)                                                        | 120                      | Α         |  |
| I <sub>CM</sub>   | $T_{c} = 25^{\circ}C$ , 1ms                                                                   | 400                      | Α         |  |
| SSOA              | $V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 3\Omega$                                        | I <sub>CM</sub> = 110    | A         |  |
| (RBSOA)           | Clamped Inductive Load                                                                        | @ 0.8 • V <sub>CES</sub> |           |  |
| P <sub>c</sub>    | T <sub>c</sub> = 25°C                                                                         | 460                      | W         |  |
| T <sub>J</sub>    |                                                                                               | -55 +150                 | °C        |  |
| $\mathbf{T}_{JM}$ |                                                                                               | 150                      | °C        |  |
| $T_{stg}$         |                                                                                               | -55 +150                 | °C        |  |
| T <sub>L</sub>    | Maximum Lead Temperature for Soldering                                                        | 300                      | °C        |  |
| T <sub>SOLD</sub> | 1.6 mm (0.062 in.) from Case for 10                                                           | 260                      | °C        |  |
| M <sub>d</sub>    | Mounting Torque ( IXGK )                                                                      | 1.13/10                  | Nm/lb.in. |  |
| F <sub>c</sub>    | Mounting Force (IXGX)                                                                         | 20120/4.527              | N/lb.     |  |
| Weight            | TO-264                                                                                        | 10                       | g         |  |
|                   | PLUS247                                                                                       | 6                        | g         |  |

| Symbol (T <sub>J</sub> = 25°C, U | Test Conditions Unless Otherwise Specified)                                    | Chara<br>Min. | cteristic<br>Typ. | Value: |    |
|----------------------------------|--------------------------------------------------------------------------------|---------------|-------------------|--------|----|
| $V_{GE(th)}$                     | $I_{\rm C}=1{\rm mA},V_{\rm CE}=V_{\rm GE}$                                    | 3.0           |                   | 5.0    | V  |
| I <sub>CES</sub>                 | $V_{CE} = V_{CES}, V_{GE} = 0V$                                                |               |                   | 100    | μA |
|                                  | Note 1, $T_J = 125^{\circ}C$                                                   |               |                   | 2.0    | mΑ |
| I <sub>GES</sub>                 | $V_{CE} = 0V, V_{GE} = \pm 20V$                                                |               |                   | ±100   | nA |
| V <sub>CE(sat)</sub>             | $I_{c} = I_{c110}, V_{GE} = 15V, \text{ Note 2}$ $T_{J} = 125^{\circ}\text{C}$ |               | 1.85<br>1.90      | 2.3    | V  |

 $V_{CES} = 1200V$   $I_{C110} = 55A$   $V_{OS} \le 2.3V$ 



# PLUS247™ (IXGX)



G = Gate E = Emitter
C = Collector Tab = Collector

#### **Features**

- Optimized for Low Conduction Losses
- Anti-Parallel Ultra Fast Diode

## **Advantages**

- High Power Density
- Low Gate Drive Requirement

## **Applications**

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

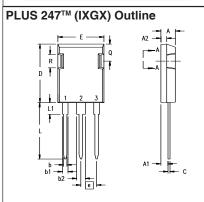


| Symbol Test Conditions Characteristic (T <sub>.1</sub> = 25°C, Unless Otherwise Specified) Min.   Typ. |                                                                                                |    | Values<br>Max. |           |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----|----------------|-----------|
| $(1_{J} = 25 \text{ C},$                                                                               |                                                                                                |    | Тур.           |           |
| g <sub>fs</sub>                                                                                        | $I_{\rm C} = I_{\rm C110}, V_{\rm CE} = 10V, \text{ Note 2}$                                   | 30 | 45             | S         |
| C <sub>ies</sub>                                                                                       |                                                                                                |    | 4340           | pF        |
| C <sub>oes</sub>                                                                                       | $V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$                                                         |    | 300            | pF        |
| C <sub>res</sub>                                                                                       |                                                                                                |    | 115            | pF        |
| $Q_{g(on)}$                                                                                            |                                                                                                |    | 185            | nC        |
| $Q_{ge}$                                                                                               | $I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15  \rm V, V_{\rm CE} = 0.5  \bullet  \rm V_{\rm CES}$ |    | 25             | nC        |
| Q <sub>gc</sub>                                                                                        |                                                                                                |    | 75             | nC        |
| t <sub>d(on)</sub>                                                                                     |                                                                                                |    | 23             | ns        |
| t <sub>ri</sub>                                                                                        | Inductive load, T <sub>J</sub> = 25°C                                                          |    | 42             | ns        |
| E <sub>on</sub>                                                                                        | $I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$                                                   |    | 5.1            | mJ        |
| t <sub>d(off)</sub>                                                                                    | $V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$                                                  |    | 365            | ns        |
| t <sub>fi</sub>                                                                                        | Note 3                                                                                         |    | 282            | ns        |
| E <sub>off</sub>                                                                                       |                                                                                                |    | 13.3           | mJ        |
| t <sub>d(on)</sub>                                                                                     |                                                                                                |    | 24             | ns        |
| t <sub>ri</sub>                                                                                        | Inductive load, T <sub>J</sub> = 125°C                                                         |    | 46             | ns        |
| E <sub>on</sub>                                                                                        | $I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$                                                   |    | 9.5            | mJ        |
| t <sub>d(off)</sub>                                                                                    | $V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$                                                  |    | 618            | ns        |
| t <sub>fi</sub>                                                                                        | Note 3                                                                                         |    | 635            | ns        |
| E <sub>off</sub>                                                                                       |                                                                                                |    | 29.0           | mJ        |
| R <sub>thJC</sub>                                                                                      |                                                                                                | ·  |                | 0.27 °C/W |
| R <sub>thCK</sub>                                                                                      |                                                                                                |    | 0.15           | °C/W      |

#### Reverse Diode (FRED)

| <b>Symbo</b> (T <sub>J</sub> = 2 |                | Test Conditions Unless Otherwise Specified)                   | Chara<br>Min. | acteristic<br>Typ. | Values<br>Max. |
|----------------------------------|----------------|---------------------------------------------------------------|---------------|--------------------|----------------|
| V <sub>F</sub>                   |                | $I_F = 60A$ , $V_{GE} = 0V$ , Note 2<br>$T_J = 150$ °C        |               | 1.85<br>1.90       | 2.5 V<br>V     |
| t <sub>rr</sub>                  | $\overline{)}$ | $I_F = 60A, V_{GE} = 0V,$                                     |               | 200                | ns             |
| I <sub>RM</sub>                  | J              | $-di_{F}/dt = 350A/\mu s, V_{R} = 600V, T_{J} = 100^{\circ}C$ |               | 24.6               | A              |
| R <sub>thJC</sub>                |                |                                                               |               |                    | 0.42 °C/W      |

#### Notes:


- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test,  $t \le 300 \mu s$ , duty cycle,  $d \le 2\%$ .
- 3. Switching times & energy losses may increase for higher  $V_{CE}(Clamp)$ ,  $T_J$  or  $R_G$ .

## **ADVANCE TECHNICAL INFORMATION**

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

#### IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

# 



Terminals: 1 = Gate 2 = Collector 3 = Emitter

| Dim.           | Millimeter |       | Millimeter Inches |          |  |
|----------------|------------|-------|-------------------|----------|--|
|                | Min.       | Max.  | Min.              | Max.     |  |
| Α              | 4.83       | 5.21  | .190              | .205     |  |
| A,             | 2.29       | 2.54  | .090              | .100     |  |
| A <sub>2</sub> | 1.91       | 2.16  | .075              | .085     |  |
| b              | 1.14       | 1.40  | .045              | .055     |  |
| b₁             | 1.91       | 2.13  | .075              | .084     |  |
| b <sub>2</sub> | 2.92       | 3.12  | .115              | .123     |  |
| С              | 0.61       | 0.80  | .024              | .031     |  |
| D              | 20.80      | 21.34 | .819              | .840     |  |
| Е              | 15.75      | 16.13 | .620              | .635     |  |
| е              | 5.45 BSC   |       | .215              | .215 BSC |  |
| L              | 19.81      | 20.32 | .780              | .800     |  |
| L1             | 3.81       | 4.32  | .150              | .170     |  |
| Q              | 5.59       | 6.20  | .220              | 0.244    |  |
| R              | 4.32       | 4.83  | .170              | .190     |  |

