Low $\mathrm{V}_{\mathrm{cE}(\text { sat) }}$ IGBT
 High Speed IGBT

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEm }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{c} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	24	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	12	A
I_{CM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	48	A
$\begin{aligned} & \hline \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=150 \Omega$ Clamped inductive load, $\mathrm{L}=300 \mu \mathrm{H}$	$\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=24 \\ @ 0.8 \mathrm{~V}_{\mathrm{CES}} \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	100	W
TJ		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g
Maximum 1.6 mm (0.	d temperature for soldering 2 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		Min.	Typ.	Max.	
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$ $\mathrm{BV}_{\text {cEs }}$ temperature coefficient	t 1000	0.072		$\begin{array}{r} \text { V } \\ \% / K \end{array}$
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{c}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GE}}$ $\mathrm{V}_{\mathrm{GE}(\mathrm{h})}$ temperature coefficient	t 2.5	-0.192	5.5	$\begin{array}{r} V \\ \% / K \end{array}$
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		250 1	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{array}{r} \text { 12N100 } \\ \text { 12N100A } \end{array}$		$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	V

$\mathrm{V}_{\text {CES }}$	$\mathrm{I}_{\text {C25 }}$	$\mathrm{V}_{\text {CE(sat) }}$
1000 V	24 A	3.5 V
1000 V	24 A	4.0 V

TO-247AD

$G=$ Gate	C
$=$ Collector	
$E=$ Emitter	$T A B=$ Collector

Features

- International standard package JEDEC TO-247 AD
- 2nd generation HDMOS ${ }^{\text {TM }}$ process
- Low $\mathrm{V}_{\text {CE(sat) }}$
- for low on-state conduction losses
- High current handling capability
- MOS Gate turn-on
drive simplicity
- Voltage rating guaranteed at high temperature $\left(125^{\circ} \mathrm{C}\right)$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- High power density

Symbol
Test Conditions

IXGH12N100/A characteristic curves may be found in the IXGH12N100U/AU1 data sheet.

TO-247 AD (IXGH) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics

