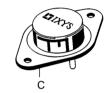

$\begin{array}{c} \text{Low V}_{\text{CE(sat)}} \text{ IGBT} \\ \text{High speed IGBT} \end{array}$



Symbol	Test Conditions	Maximum Ratings		
V _{ces}	$T_J = 25$ °C to 150 °C	1000	V	
$\mathbf{V}_{\mathtt{CGR}}$	$T_{_{ m J}}$ = 25°C to 150°C; $R_{_{ m GE}}$ = 1 M Ω	1000	V	
V _{GES}	Continuous	±20	V	
$V_{\rm GEM}$	Transient	±30	У	
I _{C25}	T _c = 25°C	34	А	
I _{C90}	$T_c = 90^{\circ}C$	17	А	
I _{CM}	$T_{\rm C}$ = 25°C, 1 ms	68	A	
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 82 Ω Clamped inductive load, L = 300 μ H	$I_{CM} = 34$ @ 0.8 V_{CES}	A	
P _c	T _c = 25°C	150	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.	
Weight		TO-204 = 18 g, TO-	-247 = 6 g	
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s				

Test Conditions Characteristic Values Symbol (T₁ = 25°C, unless otherwise specified) min. max. typ. $= 3 \text{ mA}, V_{GE} = 0 \text{ V}$ **BV**_{CES} 1000 ٧ = 250 μ A, $V_{CE} = V_{GE}$ 2.5 5 V V_{GE(th)} $V_{CE} = 0.8 \bullet V_{CES}$ $V_{GE} = 0 V$ T₁ = 25°C 250 μΑ I_{CES} T₁ = 125°C 1 mΑ $V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$ ±100 nΑ I_{GES} $I_{C} = I_{C90}, V_{GE} = 15 \text{ V}$ ٧ V_{CE(sat)} 17N100 3.5 17N100A 4.0 ٧

TO-204 AE (IXGM)

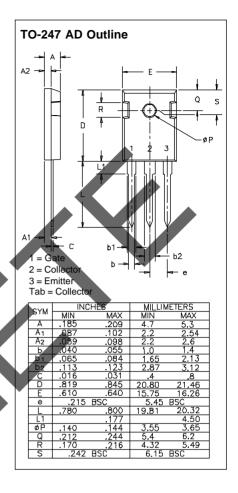
G = Gate, C = Collector, E = Emitter, TAB = Collector

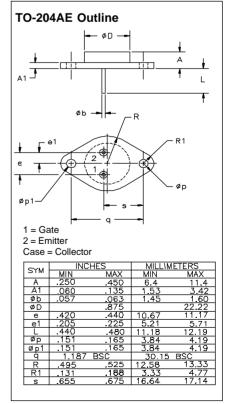
Features

- · International standard packages
- 2nd generation HDMOS[™] process
- Low $\overline{V}_{CE(sat)}$
- for low on-state conduction losses
- · High current handling capability
- MOS Gate turn-on
 - drive simplicity
- Voltage rating guaranteed at high temperature (125°C)

Applications

- AC motor speed control
- · DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies


Advantages


- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- · High power density

Symbol	Test Conditions Cha $(T_J = 25^{\circ}\text{C}, \text{ unless c} \text{min.})$	aracteriotherwis		
${f g}_{\sf fs}$	$I_{C} = I_{C90}$; $V_{CE} = 10 \text{ V}$, 6 Pulse test, t \leq 300 μ s, duty cycle \leq 2 %	15		S
C _{ies} C _{oes} C _{res}	$ V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} $	1500 175 40		pF pF pF
Q _g Q _{ge} Q _{gc}		100 20 60	120 30 90	nC nC nC
$\mathbf{t}_{d(on)}$ \mathbf{t}_{ri} $\mathbf{t}_{d(off)}$ \mathbf{t}_{fi} \mathbf{E}_{off}	Inductive load, $T_J = 25^{\circ}C$ $I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 300 \mu\text{H}, V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 82 \Omega$ $Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES}, higher T_J or increased R_G 17N100A$	100 200 500 750 450 3	1000 750	ns ns ns ns ns ns
t _{d(on)} t _{ri} E _{on} t _{d(off)} t _{li}	Inductive load, T_J = 125°C $I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 300 \mu\text{H}$ $V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 82 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G 17N100 17N100A	100 200 2.5 700 1200 750 8	1000 2000 1000	ns ns mJ ns ns ns mJ mJ
R _{thJC}		0.25	0.83	K/W

IXGH 17N100 and IXGH 17N100 A characteristic curves are located on the IXGH 17N100U1 and IXGH 17N100AU1 data sheets.

