GenX3 ${ }^{\text {TM }} 300$ V IGBT IXGH60N30C3

High Speed IGBTs for $50-150 \mathrm{kHz}$ switching

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	300	V
$\mathrm{V}_{\mathrm{CGR}}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	300	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\text {c25 }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (Limited by leads)	75	A
$\mathrm{I}_{\mathrm{Cl10}}$	$\mathrm{T}_{\mathrm{c}}=110^{\circ} \mathrm{C}$ (chip capability)	60	A
I_{CM}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	420	A
I_{A}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	60	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	400	mJ
SSOA (RBSOA)	$V_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=5 \Omega$ Clamped inductive load @ $\leq 300 \mathrm{~V}$	$\mathrm{I}_{\text {CM }}=170$	A
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	W
T,		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Jм }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum lead temperature for soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {soLD }}$	1.6 mm (0.062 in.) from case for 10s	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (TO-247)	1.13/10	Nm/lb.in.
Weight		6	g

Symbol Test Conditions

Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

			Min.	Typ.	Max.	
$\begin{aligned} & \mathrm{BV}_{\text {cES }} \\ & \mathrm{V}_{\mathrm{GE}(\mathrm{th})} \\ & \hline \end{aligned}$	$\begin{aligned} & I_{C}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}} \end{aligned}$		$\begin{array}{r} 300 \\ 2.5 \end{array}$		5.0	V V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & V_{C E}=V_{C E S} \\ & V_{G E}=0 V \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			$\begin{array}{r} 30 \\ 750 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=60 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		$\begin{aligned} & 1.55 \\ & 1.60 \end{aligned}$	1.8	V

TO-247 AD
(IXGH)

G = Gate
C = Collector
$\mathrm{E}=$ Emitter TAB = Collector

Features

- High Frequency IGBT
- Square RBSOA
- High avalanche capability
- Drive simplicity with MOS Gate Turn-On
- High current handling capability

Applications

- PFC Circuits
- PDP Systems
- Switched-mode and resonant-mode converters and inverters
- SMPS
- AC motor speed control
- DC servo and robot drives
- DC choppers

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or moreof the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

