GenX³™ 300V IGBT

IXGN400N30A3

Ultra-Low-Vsat PT IGBT for up to 10kHz Switching

## Symbol	Test Conditions	Maximum Ratings
\(V_{CES}\)	\(T_J = 25°C \) to \(150°C\)	300 V
\(V_{CEG}\)	\(T_J = 25°C \) to \(150°C\), \(R_{GE} = 1M\Omega\)	300 V
\(V_{GES}\)	Continuous	±20 V
\(V_{GEM}\)	Transient	±30 V
\(I_{C25}\)	\(T_C = 25°C\) (Chip Capability)	400 A
\(I_{C110}\)	\(T_C = 110°C\)	200 A
\(I_{RM}\)	Terminal Current Limit	200 A
\(I_{CM}\)	\(T_C = 25°C\), \(1ms\)	1200 A
\(S_{SOA}\)	\(V_{GE} = 15V\), \(T_{UJ} = 125°C\), \(R_G = 1Ω\)	\(I_{CM} = 400\) A
\(P_C\)	\(T_C = 25°C\)	735 W
\(T_J\)	\(-55 \) ... \(+150°\) C	
\(T_{JH}\)	150 °C	
\(T_{JL}\)	\(-55 \) ... \(+150°\) C	
\(V_{BSOL}\)	50/60Hz \(t = 1\) min	2500 V~
\(I_{BSOL} ≤ 1mA\) \(t = 1\) s	3000 V~	
\(M_d\)	Mounting Torque	1.5/13 Km/lb.in.
Terminal Connection Torque (M4)	1.3/11.5 Km/lb.in.	

Weight

30 g

Symbol	**Test Conditions**	**Characteristic Values** (\(T_J = 25°C\), Unless Otherwise Specified)	**Min.**	**Typ.**	**Max.**
\(B V_{CES}\)	\(I_C = 1mA\), \(V_{GE} = 0V\)	300 V	V		
\(V_{GEC}\)	\(I_C = 4mA\), \(V_{CE} = V_{GE}\)	3.0 V	5.0 V		
\(I_{CES}\)	\(V_{CE} = V_{CES}\), \(V_{GE} = 0V\)	50 μA \(T_J = 125°C\)	2 mA		
\(I_{GES}\)	\(V_{CE} = 0V\), \(V_{GE} = ±20V\)		±400 nA		
\(V_{CE(Sat)}\)	\(I_C = 100A\), \(V_{GE} = 15V\), Note 1		1.15 V		
\(I_C = 400A\)		1.70 V			

© 2009 IXYS CORPORATION, All Rights Reserved

DS99592B(7/09)
IXGN400N30A3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Characteristic Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_c = 60A, V_{GE} = 10V)</td>
<td>(g_{ds})</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 25V, V_{GE} = 0V)</td>
<td>(C_{ces})</td>
</tr>
<tr>
<td></td>
<td>(f = 1MHz)</td>
<td>(C_{ces})</td>
</tr>
<tr>
<td></td>
<td>(I_c = 100V, V_{GE} = 15V)</td>
<td>(Q_{gs(on)})</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 0.5 \cdot V_{CES})</td>
<td>(Q_{gs})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Q_{gc})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Q_{gc})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_d(on)) Resistive Load, (T_J = 25^\circ C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_r)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_d(off))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_d(on)) Resistive Load, (T_J = 125^\circ C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_d(off))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{thJC})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{thCK})</td>
</tr>
</tbody>
</table>

Note 1. Pulse test, \(t \leq 300 \mu s \); duty cycle, \(d \leq 2\% \).
Fig. 1. Output Characteristics
@ $T_J = 25^\circ$C

Fig. 2. Output Characteristics
@ $T_J = 125^\circ$C

Fig. 3. Dependence of $V_{CE(sat)}$ on Junction Temperature

Fig. 4. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage

Fig. 5. Input Admittance

Fig. 6. Transconductance
Fig. 7. Gate Charge

- $V_{CE} = 150\text{V}$
- $I_C = 100\text{A}$
- $I_G = 10\text{mA}$

Fig. 8. Capacitance

- $f = 1\text{MHz}$
- C_{res}
- C_{des}
- C_{ies}

Fig. 9. Reverse-Bias Safe Operating Area

- $T_J = 125^\circ\text{C}$
- $R_o = 1\Omega$
- $\frac{dv}{dt} < 10\text{V} / \text{ns}$

Fig. 10. Maximum Transient Thermal Impedance

- $Z_{thJC} - ^\circ\text{C} / \text{W}$
Fig. 11. Resistive Turn-on Rise Time vs. Junction Temperature
- $R_G = 1\Omega$, $V_{GE} = 15V$
- $V_{CE} = 240V$
- $I_C = 300A, 200A, 100A$
- $T_J = 25^\circ C$
- $T_J = 125^\circ C$

Fig. 12. Resistive Turn-on Rise Time vs. Collector Current
- $R_G = 1\Omega$, $V_{GE} = 15V$
- $V_{CE} = 240V$
- $T_J = 25^\circ C$
- $T_J = 125^\circ C$

Fig. 13. Resistive Turn-on Switching Times vs. Gate Resistance
- $I_C = 200A, 100A$

Fig. 14. Resistive Turn-off Switching Times vs. Junction Temperature
- $R_G = 1\Omega$, $V_{GE} = 15V$
- $V_{CE} = 240V$
- $I_C = 300A, 200A, 100A$

Fig. 15. Resistive Turn-off Switching Times vs. Gate Resistance
- $I_C = 100A, 200A, 300A$

Fig. 16. Resistive Turn-off Switching Times vs. Collector Current
- $T_J = 125^\circ C$
- $T_J = 25^\circ C$