Extreme Light Punch Through IGBT for 10-30kHz Switching

Symbol	Test Conditions	Maximum Ratings
V_{CES}	$T_J = 25°C$ to $175°C$	600 V
V_{EGR}	$T_J = 25°C$ to $175°C$, $R_{GE} = 1M\Omega$	600 V
V_{GES}	Continuous	±20 V
V_{GEM}	Transient	±30 V
I_{CES}	$T_J = 25°C$ (Chip Capability)	550 A
I_{LMS}	Leads Current Limit	160 A
I_{C110}	$T_J = 110°C$ (Chip Capability)	300 A
I_{CM}	$T_J = 25°C$, 1ms	1140 A
I_A	$T_J = 25°C$	100 A
E_{AS}	$T_J = 25°C$	500 mJ
V_{SSOA}	$V_{GE} = 15V$, $T_J = 150°C$, $R_G = 1\Omega$	$I_{CM} = 600 A$
t_{sc}	Clamped Inductive Load	$V_{CE} \leq V_{CES}$
t_{SCS0A}	$V_{GE} = 15V$, $V_{CE} = 360V$, $T_J = 150°C$	10 μs
P_C	Maximum Lead Temperature for Soldering	2300 W
T_J	$T_J = 25°C$	-55 ... +175 °C
T_{GAM}		175 °C
T_{stg}	$-55 ... +175°C$	
T_L	Maximum Lead Temperature for Soldering	300 °C
T_{SOLD}	1.6 mm (0.062in.) from Case for 10s	260 °C
M_d	Mounting Torque (TO-264)	1.13/10 Nm/lb.in.
F_C	Mounting Force (PLUS247)	20..120 /4.5..27 N/lb.
Weight	TO-264	10 g
PLUS247	6 g	

Features

- Optimized for 10-30kHz Switching
- Square RBSOA
- International Standard Packages
- Avalanche Rated
- Short Circuit Capability
- High Current Handling Capability

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
Symbol Test Conditions

(T_J = 25°C Unless Otherwise Specified)

<table>
<thead>
<tr>
<th>Characteristic Values</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>g<sub>fs</sub></td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>C<sub>res</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>es</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q<sub>g</sub></td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q<sub>ge</sub></td>
<td></td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Q<sub>gc</sub></td>
<td></td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>t<sub>d(on)</sub></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E<sub>on</sub></td>
<td>3.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>d(off)</sub></td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>y</sub></td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E<sub>off</sub></td>
<td>2.86</td>
<td>4.40</td>
<td></td>
</tr>
<tr>
<td>R<sub>thJC</sub></td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>thCS</sub></td>
<td>0.15 °C/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher V_{CE}(clamp), T_J or R_G.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.
Fig. 7. Transconductance

Fig. 8. Gate Charge

Fig. 9. Capacitance

Fig. 10. Reverse-Bias Safe Operating Area

Fig. 11. Maximum Transient Thermal Impedance

Fig. 12. Forward-Bias Safe Operating Area
Fig. 19. Inductive Turn-on Switching Times vs. Gate Resistance

- t_{r1} - Nanoseconds
- $t_{d(on)}$ - Nanoseconds
- $T_J = 150^\circ C$, $V_{GE} = 15V$, $V_{CE} = 400V$
- $I_C = 100A$
- $I_C = 50A$

Fig. 20. Inductive Turn-on Switching Times vs. Collector Current

- t_{r1} - Nanoseconds
- $t_{d(on)}$ - Nanoseconds
- $R_G = 1\Omega$, $V_{GE} = 15V$, $V_{CE} = 400V$
- $T_J = 25^\circ C$
- $T_J = 150^\circ C$

Fig. 21. Inductive Turn-on Switching Times vs. Junction Temperature

- t_{r1} - Nanoseconds
- $t_{d(on)}$ - Nanoseconds
- $R_G = 1\Omega$, $V_{GE} = 15V$, $V_{CE} = 400V$
- $I_C = 100A$
- $I_C = 50A$