HiPerFET ${ }^{\text {™ }}$
Power MOSFETs
Q Class

IXFH/IXFT12N100Q IXFH/IXFT10N100Q

N-ChannelEnhancement Mode
Avalanche Rated
Low Q $_{g}$, High dv/dt

Symbol	Test Conditions		Maximum	gs
$V_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		1000	V
$V_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$		1000	V
$\mathrm{V}_{\text {Gs }}$	Continuous		± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient		± 30	V
$\mathrm{I}_{\mathrm{2} 5}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	12N100Q	12	A
		10N100Q	10	A
I_{DM}	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \\ & \text { pulse width limited by } \mathrm{T}_{\mathrm{JM}} \end{aligned}$	12N100Q	48	A
		10N100Q	40	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	12N100Q	12	A
		10N100Q	10	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	mJ
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$		5	V / ns
P_{D}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		300	W
TJ	$-55 \ldots+150 \quad{ }^{\circ} \mathrm{C}$			
T_{JM}			150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$			$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T	1.6 mm (0.063 in) from case for 10 s		300	${ }^{\circ} \mathrm{C}$
M ${ }_{\text {d }}$	Mounting torque		1.13/10	b.in.
Weight	$\begin{aligned} & \text { TO-247 AD } \\ & \text { TO-268 } \end{aligned}$		6	g
			4	g

Symbol Test Conditions Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

		min.	typ.	max.
$\mathrm{V}_{\text {Dss }}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$	1000		V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	2.5		5.5 V
$\mathrm{I}_{\text {gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DS}}=0$			$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & V_{D S}=0.8 \cdot V_{D S S} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rr} 50 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25} \\ & \text { Pulse test, } \mathrm{t} \leq 300 \mu \mathrm{~s}, \mathrm{c} \end{aligned}$	12N100Q 10N100Q y cle $d \leq 2 \%$		$\begin{array}{ll} 1.05 & \Omega \\ 1.20 & \Omega \end{array}$

$\mathrm{V}_{\mathrm{DSS}}$	$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{n})}$
1000 V	12 A	1.05Ω
1000 V	10 A	1.20Ω

$t_{\mathrm{rr}} \leq 250 \mathrm{~ns}$

TO-247 AD (IXFH)

TO-268 (D3) (IXFT)

(TAB)

G = Gate
D = Drain
S = Source
TAB = Drain

Features

- IXYS advanced low Q_{g} process
- Low gate charge and capacitances
- easier to drive
- faster switching
- International standard packages
- Low $\mathrm{R}_{\mathrm{DS} \text { (on) }}$
- Unclamped Inductive Switching (UIS) rated
- Molding epoxies meet UL 94 V-0 flammability classification

Advantages

- Easy to mount
- Space savings
- High power density

Source-Drain Diode

Characteristic Values ($T_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Source-Drain Diode $\quad\left(T=25^{\circ} \mathrm{C}\right.$		Characteristic Values ess otherwise specified)		
Symbol	Test Conditions	min. ${ }^{\text {typ. }}$	max.	
I_{s}	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$		12	A
$\mathrm{I}_{\text {SM }}$	Repetitive; pulse width limited by T_{JM}		48	A
$\mathrm{v}_{\text {sD }}$	$I_{F}=I_{S}, V_{G S}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.5	V
$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & \mathrm{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \end{aligned}$	$\} I_{F}=I_{S},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	200 0.6 7		$n s$ $\mu \mathrm{C}$ A

TO-268 Outline

Figure 1. Output Characteristics at $25^{\circ} \mathrm{C}$

Figure 3. $R_{D S(o n)}$ normalized to value at $I_{D}=12 \mathrm{~A}$

Figure 5. Drain Currentvs. Case Temperature

Figure 2. Output Characteristics at $125^{\circ} \mathrm{C}$

Figure 4. $R_{D S(0 n)}$ normalized to value at $I_{D}=12 \mathrm{~A}$

Figure6. Admittance Curves

Figure 7. Gate Charge

Figure 9. Source Current vs. Source to Drain Voltage

Figure 8. Capacitance Curves

Figure 10. Forward Bias Safe Operating Area

Figure 11.Transient Thermal Resistance
$4,881,106$
$4,931,844$

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

