Polar ${ }^{\text {TM }}$ Power MOSFET HiPerFET ${ }^{\text {TM }}$

N-Channel Enhancement Mode Avalanche Rated
Fast Intrinsic Diode
IXFA5N100P IXFH5N100P
IXFP5N100P

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	5	A
$\underline{I_{\text {D }}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	10	A
$\mathrm{I}_{\text {A }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	5	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	mJ
dV/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	10	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	250	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062) from case for 10s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	Plastic body for 10s	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (TO-220,TO-247)	1.13 / 10	Nm/lb.in.
Weight	TO-263	2.5	g
	TO-220	3.0	g
	TO-247	6.0	g

Symbol Test Conditions ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			Characteristic Values		
			Min.	Typ.	Max.
$\mathrm{BV}_{\text {DSs }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$		1000		V
$\mathrm{V}_{\text {GS(th) }}$	$V_{D S}=V_{G S}, ~ I^{\prime}$		3.0		6.0 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$				$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DS }}$	$\begin{aligned} & V_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$			$\begin{array}{r} 10 \mu \mathrm{~A} \\ 750 \mu \mathrm{~A} \end{array}$
$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$,	e 1			2.8 ת

TO-220 (IXFP)

$G=$ Gate	$D=$ Drain
$S=$ Source	$T A B=$ Drain

Features

- International standard packages
- Dynamic dv/dt Rating
- Avalanche Rated
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, rugged Polar ${ }^{\text {TM }}$ process
- Low Q_{G}
- Low Drain-to-Tab capacitance
- Low package inductance

Advantages

- Easy to mount
- Space savings

Applications:

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- Uninterrupted power supplies
- AC motor control
- High speed power switching applications

Source-Drain Diode

Symbol	Test Conditions	($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		Min.	Typ.	Max	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$			5	A
$\mathrm{I}_{\text {SM }}$	Repetitive, pulse width limited by T_{JM}			20	A
$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.3	V
$\left.\begin{array}{l} \mathbf{t}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RM}} \\ \mathbf{Q}_{\mathrm{RM}} \end{array}\right\}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & -\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \end{aligned}$		7.4 0.43	200	$n s$ A μC

Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$; duty cycle, $\mathrm{d} \leq 2 \%$.

PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXFH) Outline

Dim.	Millimeter			
	Min.	Max.	Minches	
Max.				
A^{2}	4.7	5.3	.185	.209
$\mathrm{~A}_{1}$	2.2	2.54	.087	.102
$\mathrm{~A}_{2}$	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
$\mathrm{~b}_{1}$	1.65	2.13	.065	.084
$\mathrm{~b}_{2}$	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
$\varnothing \mathrm{P}$	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-220 (IXFP) Outline

Pins: 1-Gate 2 - Drain

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
c	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
e	.100 BSC		2.54 BSC	
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
$\varnothing P$.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065B1	6,683,344	6,727,585	7,005,734B2	7,157,338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123B1	6,534,343	6,710,405B2	6,759,692	7,063,975B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728B1	6,583,505	6,710,463	6,771,478B2	7,071,537	

Fig. 1. Output Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics
@ $125^{\circ} \mathrm{C}$

Fig. 5. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

