LinearL2™ Power MOSFET w/ Extended FBSOA

IXTH110N10L2

- **N-Channel Enhancement Mode**
- **Guaranteed FBSOA**
- **Avalanche Rated**

Symbol Test Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Maximum Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>$T_J = 25°C$ to $150°C$</td>
<td>100 V</td>
</tr>
<tr>
<td>V_{DGR}</td>
<td>$T_J = 25°C$ to $150°C$, $R_{GS} = 1M\Omega$</td>
<td>100 V</td>
</tr>
<tr>
<td>V_{GSS}</td>
<td>Continuous</td>
<td>±20 V</td>
</tr>
<tr>
<td>V_{GSM}</td>
<td>Transient</td>
<td>±30 V</td>
</tr>
<tr>
<td>I_{D25}</td>
<td>$T_C = 25°C$</td>
<td>110 A</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>$T_C = 25°C$, Pulse Width Limited by T_{JM}</td>
<td>300 A</td>
</tr>
<tr>
<td>I_A</td>
<td>$T_C = 25°C$</td>
<td>110 A</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>$T_C = 25°C$</td>
<td>3 J</td>
</tr>
<tr>
<td>P_D</td>
<td>$T_C = 25°C$</td>
<td>600 W</td>
</tr>
<tr>
<td>T_J</td>
<td>-55 to $+150°C$</td>
<td>°C</td>
</tr>
<tr>
<td>T_{JM}</td>
<td>$+150°C$</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>-55 to $+150°C$</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>1.6mm (0.063in) from Case for 10s</td>
<td>300 °C</td>
</tr>
<tr>
<td>T_{SOLD}</td>
<td>Plastic Body for 10s</td>
<td>260 °C</td>
</tr>
<tr>
<td>M_d</td>
<td>Mounting Torque (TO-247)</td>
<td>1.13/10 Nm/lb.in.</td>
</tr>
<tr>
<td>Weight</td>
<td>TO-247</td>
<td>6.0 g</td>
</tr>
<tr>
<td></td>
<td>TO-268</td>
<td>4.0 g</td>
</tr>
</tbody>
</table>

Characteristic Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Characteristic Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B V_{DSS}$</td>
<td>$V_GS = 0V$, $I_D = 250\mu A$</td>
<td>100 V</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>$V_GS = V_DS$, $I_D = 250\mu A$</td>
<td>2.5 V</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>$V_GS = \pm 20V$, $V_DS = 0V$</td>
<td>±100 nA</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>$V_DS = V_{DSS}$, $V_GS = 0V$</td>
<td>5 μA</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>$V_GS = 10V$, $I_D = 0.5 \times I_{D25}$, Note 1</td>
<td>18 mΩ</td>
</tr>
</tbody>
</table>

Features

- Designed for Linear Operation
- International Standard Packages
- Avalanche Rated
- Integrated Gate Resistor for Easy Paralleling
- Guaranteed FBSOA at 75°C

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Solid State Circuit Breakers
- Soft Start Controls
- Linear Amplifiers
- Programmable Loads
- Current Regulators

© 2010 IXYS CORPORATION, All Rights Reserved

DS100235(01/10)
Symbol	Test Conditions (T_j = 25°C, Unless Otherwise Specified)	Characteristic Values
		Min.
g_s | V_{DS} = 10V, I_D = 0.5 • I_{DS}, Note 1 | 45 | 55 | 65 S
C_{gs} | V_{GS} = 0V, V_{DS} = 25V, f = 1MHz | 10.5 nF
C_{oss} | | 1585 pF
C_{rss} | | 420 pF
R_{Gi} | Gate Input Resistance | 1.8 Ω
t_{δ(on)} | Resistive Switching Times | 28 ns
t_r | | 130 ns
t_{r(fast)} | R_G = 2.2Ω (External) | 99 ns
t_r | | 24 ns
Q_{g(on)} | V_{GS} = 10V, V_{DS} = 0.5 • V_{DS}, I_D = 0.5 • I_{DS} | 260 nC
Q_{gs} | | 52 nC
Q_{gd} | | 106 nC
R_{thJC} | TO-247 | 0.21 °C/W
R_{thCS} | TO-247 | 0.21 °C/W

Safe Operating Area Specification
Symbol	Test Conditions	Characteristic Values
		Min.
SOA | V_{DS} = 80V, I_D = 3.6A, T_C = 75°C, t_p = 5s | 360 W

Source-Drain Diode
Symbol	Test Conditions (T_j = 25°C, Unless Otherwise Specified)	Characteristic Values
I_S | V_{GS} = 0V | 110 A
I_{SM} | Repetitive, Pulse Width Limited by T_{jam} | 440 A
V_{SD} | I_F = I_S, V_{GS} = 0V, Note 1 | 1.4 V
t_r | | 230 ns
I_{SM} | I_F = 55A, -di/dt = 100A/μs, | 19.4 A
Q_{SM} | V_R = 50V, V_{GS} = 0V | 2.2 μC

Note 1. Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.

ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.
Fig. 1. Output Characteristics @ $T_J = 25^\circ$C

![Graph of output characteristics showing V_{DS} vs. I_D for different values of V_{GS} at $T_J = 25^\circ$C.]

Fig. 2. Extended Output Characteristics @ $T_J = 25^\circ$C

![Graph of extended output characteristics showing V_{DS} vs. I_D for different values of V_{GS} at $T_J = 25^\circ$C.]

Fig. 3. Output Characteristics @ $T_J = 125^\circ$C

![Graph of output characteristics showing V_{DS} vs. I_D for different values of V_{GS} at $T_J = 125^\circ$C.]

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 55$A Value vs. Junction Temperature

![Graph of $R_{DS(on)}$ normalized vs. T_J for $I_D = 55$A.]

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 55$A Value vs. Drain Current

![Graph of $R_{DS(on)}$ normalized vs. I_D for $V_{GS} = 10$V at $T_J = 125^\circ$C and $T_J = 25^\circ$C.]

Fig. 6. Maximum Drain Current vs. Case Temperature

![Graph of maximum drain current vs. case temperature.]

© 2010 IXYS CORPORATION, All Rights Reserved
Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Maximum Transient Thermal Impedance
Fig. 13. Forward-Bias Safe Operating Area
@ $T_C = 25^\circ C$

- V_{DS} - Volts
- I_D - Amperes
- R_{DSS} Limit
- $T_J = 150^\circ C$
- $T_C = 25^\circ C$
- Single Pulse
- $25\mu s$, $100\mu s$, $10ms$, $100ms$, DC

Fig. 14. Forward-Bias Safe Operating Area
@ $T_C = 75^\circ C$

- V_{DS} - Volts
- I_D - Amperes
- R_{DSS} Limit
- $T_J = 150^\circ C$
- $T_C = 75^\circ C$
- Single Pulse
- $25\mu s$, $100\mu s$, $10ms$, $100ms$, DC