High Voltage Power MOSFET

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\mathrm{DSS}}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	2200	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	2200	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	0.60	A
$\mathrm{I}_{\mathrm{D} 110}$	$\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	0.38	A
$\underline{I_{\text {D }}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	1.20	A
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	104	W
T_{J}		- $55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Jм }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		- $55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {soLD }}$	1.6 mm (0.062in.) from Case for 10s	260	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}$	Mounting Torque	1.13/10	Nm/lb.in

Weight 6 g

$\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(T_{J}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$			Characteristic Values		
			Min.	Typ.	Max.
$B V_{\text {DSs }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		2200		V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		2.0		4.0 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DS }}$	$\mathrm{V}_{\mathrm{DS}}=0.8 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 10 \mu \mathrm{~A} \\ & 200 \mu \mathrm{~A} \end{aligned}$
$\underline{\mathbf{R}_{\text {DS(on) }}}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.30 \mathrm{~A}$, Not				80Ω

TO-247HV

$$
\begin{array}{lll}
\mathrm{G}=\text { Gate } & \mathrm{D} & =\text { Drain } \\
\mathrm{S}=\text { Source } & \mathrm{Tab}=\text { Drain }
\end{array}
$$

Features

- High Blocking Voltage
- High Voltage Package

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High Voltage Power Supplies
- Capacitor Discharge Applications
- Pulse Circuits
- Laser and X-Ray Generation Systems

Note: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ Value vs.
Junction Temperature

Fig. 5. Maximum Drain Current vs.
Case Temperature

Fig. 2. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{1 2 5}^{\mathbf{\circ}} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ Value vs. Drain Current

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 9. Gate Charge

Fig. 8. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Capacitance

Fig. 11. Maximum Transient Thermal Impedance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

