
Buck / Boost Tpology

CoolMOS^{TM 1)} with fast SONIC Diode

ISOPLUS™ - electrically isolated surface to heatsink Surface Mount Power Device

 I_{D25} = 54 A V_{DSS} = 600 V $R_{DS(on) max}$ = 41 m Ω

Part number MKG40RK600LB

Features / Advantages:

- Fast CoolMOS™ 1) C6 MOSFET
- very low on-resistance
- low gate charge
- avalanche rated for unclamped inductive switching (UIS)

Applications:

- Buck / boost chopper
- PFC stage
- Forward converter

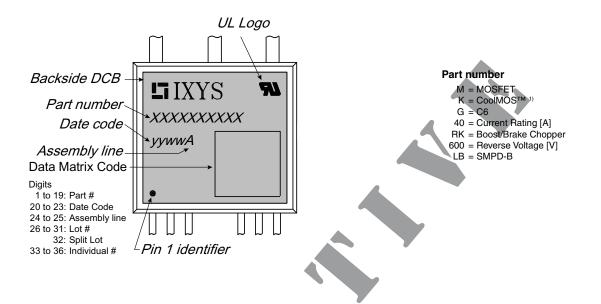
Package: SMPD

- isolated surface to heatsink
- low coupling capacity between pins and heatsink
- PCB space saving
- enlarged creepage towards heatsink
- application friendly pinout
- low inductive current path
- high reliability

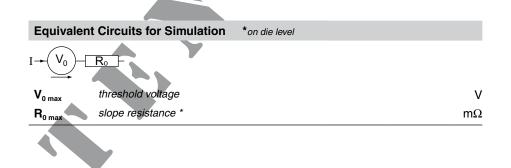
¹⁾ CoolMOS[™] is a trademark of Infineon Technologies AG.

IXYS reserves the right to change limits, test conditions and dimensions.

Data according ot IEC 60747 and per semiconductor unless otherwise specified

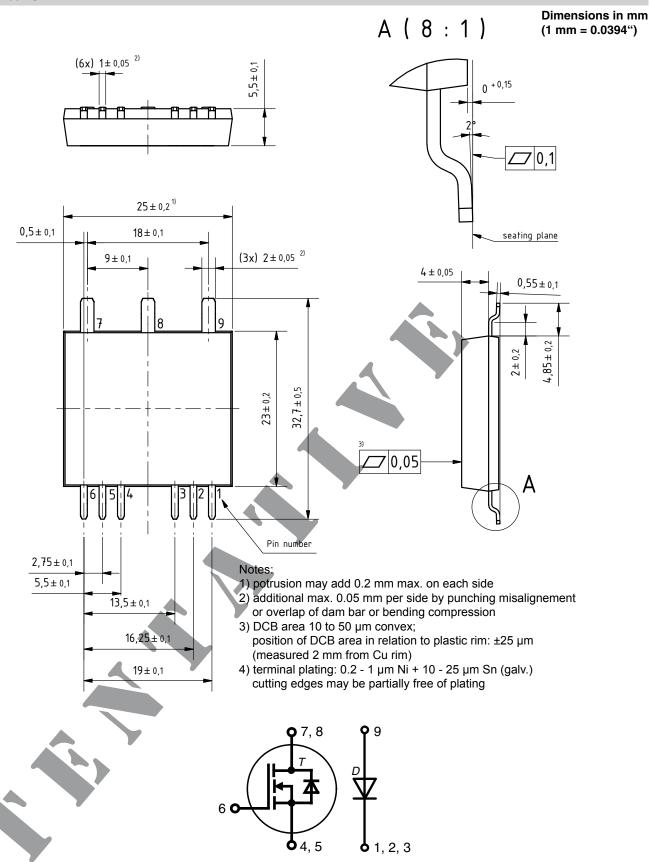

MOSFET	Т				Rating	S	
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{DSS}	drain source breakdown voltage	up to	$T_{VJ} = 150^{\circ}C$			600	\
V _{GS}	gate source voltage	continuous	$T_{VJ} = 25^{\circ}C$			±20	\
	duain accurant	transient	T 0500			±30	
D ₂₅	drain current		$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 80^{\circ}{\rm C}$			54 41	A
I _{D80}			$T_{\rm C} = 100^{\circ}{\rm C}$			34	, A
E _{AS}	non-repetetive avalanche energy					1.95	
I _A	non repetetive availations energy	single pulse	$T_{VJ} = 25^{\circ}C$			13.4	Ä
dV/dt	rate of rise of voltage	$I_S \ge I_{DM}; V_{DD} \le 400 \text{ V}$	$T_{VJ} = 25^{\circ}C$			15	V/ns
R _{DSon}	static drain source on resistance	$I_D = 44 \text{ A}; V_{GS} = 10 \text{ V (Chip)}$	$T_{VJ} = 25^{\circ}C$		37	41	mΩ
$V_{GS(th)}$	gate threshold voltage	$I_D = 3 \text{ mA}; V_{DS} = V_{GS}$	$T_{VJ} = 25^{\circ}C$	2.5	3	3.5	\
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS}$; $V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		50	5	μ <i>Α</i> μ <i>Α</i>
I _{GSS}	gate source leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = \pm 20 \text{ V}$	103 - 100 0		- 00	±100	—— <u>P"</u> nA
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 100 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		6.5		nF
C _{oss}	output capacitance	GS - O -, -DS - 100 v,1 - 1 WI IZ	$T_{VJ} = 25^{\circ}C$		360		pF
Q _g	total gate charge		<u> </u>		290	190	nC
Q_{gs}	gate source charge	$V_{DS} = 480 \text{ V}; I_D = 44 \text{ A}$	$T_{VJ} = 25^{\circ}C$		36	.00	nC
Q_{gd}	gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; R_G = 1.6 \Omega$			150		nC
t _{d(on)}	turn-on delay time				tbd		ns
t,	current rise time	Inductive switching			tbd		ns
$\mathbf{t}_{d(off)}$	turn-off delay time	boost mode with diode D			tbd		ns
t _f	current fall time	$V_{DS} = 380 \text{ V}; I_{D} = 44 \text{ A}$	$T_{VJ} = 25^{\circ}C$		tbd		ns
E _{on}	turn-on energy per pulse	$V_{GS} = 380 \text{ V}, I_{B} = 114 \text{ V}$ $V_{GS} = 13 \text{ V}; R_{G} = 1.6 \Omega$	1 _{VJ} – 20 0		tbd		m
E _{off}	turn-off energy per pulse	V _{GS} = 10 V, 11 _G = 1.0 12			tbd		m
E _{rec(off)}	reverse recovery losses at turn-off				tbd		mJ
R_{thJC}	thermal resistance junction to case					0.4	K/W
R _{thJH}	thermal resistance junction to heatsink	with heatsink compound, IXYS test	setup		0.6		K/W
Source-D	rain Diode of MOSFETT				Rating	s	
Symbol	Definitions	Conditions		min.	typ.	max.	
l _{S25} l _{S80}	continuous source current		$T_{\rm C} = 25^{\circ} \text{C}$ $T_{\rm C} = 80^{\circ} \text{C}$			70 tbd	A
V _{SD}	forward voltage drop	I _F = 44 A; V _{GS} = 0 V	$T_{VJ} = 25^{\circ}C$		0.9	1.1	V
t _{rr}	reverse recovery time		101 - 20 0		0.0	950	ns
Q _{RM}	reverse recovery time reverse recovery charge (intrinsic diode)	$I_F = 44 \text{ A}; V_R = 400 \text{ V}$	$T_{VJ} = 25^{\circ}C$		32	930	μC
I _{RM}	max. reverse recovery current	$-di_F/dt = 100 A/\mu s$			62		A
Diode D					s	•	
Symbol	Definitions	Conditions		min.	Rating: typ.	max.	
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$		-717'	600	V
-		DC	$T_{\rm C} = 25^{\circ}{\rm C}$			65	A
I _{F25} I _{F80}	continuous source current	DC	$T_{\rm C} = 80^{\circ} \rm C$			45	A
V _F	forward voltage	$I_F = 44 \text{ A (Chip)}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.70 1.65	2.0	V
I _R	reverse current	$V_{B} = V_{BBM}$	$T_{VJ} = 125 \text{ C}$ $T_{VJ} = 25 \text{ C}$			100	<u>ν</u> μΑ
-н		·H — ▼HHM	$T_{VJ} = 25^{\circ}C$			8	mA
I _{RM}	max. reverse recovery current	$I_F = 30 \text{ A}; V_R = 350 \text{ V}$	T _{VJ} = 100°C		tbd		A
	tion -	-di/dt = 240 A/μs	T (2222				
t _{rr}	reverse recovery time	$I_F = 1 \text{ A}; V_R = 30 \text{ V}; -di/dt = 100 \text{ A}/\mu$	$I_{VJ} = 100^{\circ}C$		tbd		ns
R _{thJC}	thermal resistance junction to case	with heating arms 1 1000			0.05	0.6	K/W
R _{thJH}	thermal resistance junction to heatsink	with heatsink compound; IXYS test	setup		0.85		K/W

Data according ot IEC 60747 and per semiconductor unless otherwise specified


IXYS reserves the right to change limits, test conditions and dimensions.

Package SMPD				Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.		
T _{stg}	storage temperature virtual junction temperature		-55 -55		125 150	°C	
Weight				8		g	
F _c	mounting force with clip		40		130	N	
d _{Spp/App}	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	1.65 4.0			mm mm	
V _{ISOL}	isolation voltage	t = 1 second $t = 1$ minute 50/60 Hz; RMS; $I_{ISOL} < 1$ mA		3000 2500		V	
C _P	coupling capacity	between shorted terminals and backside metal		90		pF	
СТІ			400				
R _{pin-chip}	resistance pin to chip	$V = (R_{DSon} + 2 \cdot R) \cdot I_D \text{ resp. } V = V_F + 2 \cdot R \cdot I_F$		1		mΩ	

Ordering	Part Name		Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MKG40RK600LB-TRR	V	MKG40RK600LB	Tape&Reel	200	514630



IXYS reserves the right to change limits, test conditions and dimensions.

Data according ot IEC 60747 and per semiconductor unless otherwise specified

Outlines SMPD

