Anode Shorted Gate Turn-Off Thyristor

Types G3000TF450

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>VOLTAGE RATINGS</th>
<th>MAXIMUM LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DRM})</td>
<td>4500</td>
<td>V</td>
</tr>
<tr>
<td>(V_{RSM})</td>
<td>4500</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DC-link})</td>
<td>2800</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IRM})</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(V_{RSM})</td>
<td>18</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATINGS</th>
<th>MAXIMUM LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{TGQ})</td>
<td>3000</td>
<td>A</td>
</tr>
<tr>
<td>(L_s)</td>
<td>200</td>
<td>nH</td>
</tr>
<tr>
<td>(I_{TM})</td>
<td>2770</td>
<td>A</td>
</tr>
<tr>
<td>(I_{TSM})</td>
<td>24</td>
<td>kA</td>
</tr>
<tr>
<td>(I_{TSM2})</td>
<td>32</td>
<td>kA</td>
</tr>
<tr>
<td>(P_{FGM})</td>
<td>200</td>
<td>W</td>
</tr>
<tr>
<td>(P_{RGM})</td>
<td>21</td>
<td>kW</td>
</tr>
<tr>
<td>(T_{op})</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>(V_{RGM})</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(T_{op})</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:

1) \(V_{GK}=-2 \)Volts.
2) \(T_r=125^\circ C, \ V_D=2800V, \ V_{DM} \leq 4500V \ \text{d}i/dt=40A/\mu s, \ I_{TGQ}=3000A \text{ and } C_s=6 \mu F.\)
3) Double-side cooled, single phase; 50Hz, 180° half-sinewave.
4) \(T_{op}=125^\circ C, \ \text{single phase, 180° sinewave, re-applied voltage } V_D=V_{R} \leq 10V.\)
5) \(I_t=3000A \text{ repetitive, } I_{dur}=30A, \ \text{d}i/dt=20A/\mu s. \text{ For } \text{d}i/dt>500A/\mu s \text{ please consult the factory.}\)
6) May exceed this value during turn-off avalanche period.
Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>TEST CONDITIONS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TM} Maximum peak on-state voltage</td>
<td>-</td>
<td>3.75</td>
<td>4.0</td>
<td>I_G=8A, I_T=3000A</td>
<td>V</td>
</tr>
<tr>
<td>I_L Latching current</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_H Holding current.</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>dv/dt_{cr} Critical rate of rise of off-state voltage</td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>V_D=3000V, V_GR=-2V</td>
<td>V/μs</td>
</tr>
<tr>
<td>I_{ORM} Peak off state current</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>Rated V_{ORM}, V_GR=-2V</td>
<td>mA</td>
</tr>
<tr>
<td>I_{RRM} Peak reverse current</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>V_{RR}=18V</td>
<td>mA</td>
</tr>
<tr>
<td>I_{GKM} Peak negative gate leakage current</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>V_GR=-18V</td>
<td>mA</td>
</tr>
<tr>
<td>V_{GT} Gate trigger voltage</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>T_J=40°C</td>
<td>V</td>
</tr>
<tr>
<td>I_{GT} Gate trigger current</td>
<td>-</td>
<td>0.8</td>
<td>1.0</td>
<td>T_J=25°C V_D=25V, R_L=25mΩ</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>T_J=125°C</td>
<td>V</td>
</tr>
<tr>
<td>t_d Delay time</td>
<td>-</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{gt} Turn-on time</td>
<td>-</td>
<td>4</td>
<td>10</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>E_{on} Turn-on energy</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>t_r Fall time</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_s Storage time</td>
<td>-</td>
<td>20</td>
<td>25</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{g_t} Turn-off time</td>
<td>-</td>
<td>22</td>
<td>30</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>I_{GQM} Peak turn-off gate current</td>
<td>-</td>
<td>850</td>
<td>-</td>
<td>V_OM=3600V, I_{GQO}=3000A, dI_G/dt=40A/μs, V_GR=-16V, C_S=6μF</td>
<td>A</td>
</tr>
<tr>
<td>Q_{GQ} Turn-off gate charge</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td></td>
<td>mC</td>
</tr>
<tr>
<td>t_{tail} Tail time</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>E_{off} Turn-off energy</td>
<td>-</td>
<td>7</td>
<td>10</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>R_{thJK} Thermal resistance junction to sink</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>Double side cooled</td>
<td>K/kW</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>Cathode side cooled</td>
<td>K/kW</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>Anode side cooled</td>
<td>K/kW</td>
</tr>
<tr>
<td>F Mounting force</td>
<td>30</td>
<td>-</td>
<td>44</td>
<td>(see note 2)</td>
<td>kN</td>
</tr>
<tr>
<td>W_t Weight</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td></td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
1) Unless otherwise indicated T_J=125°C.
2) For other clamping forces, consult factory.
Notes on ratings and characteristics.

1. Maximum Ratings.

1.1 Off-state voltage ratings.
Unless otherwise indicated, all off-state voltage ratings are given for gate conditions as diagram 1. It should be noted that V_{DRM} is the repeatable peak voltage, which may be applied to the device and does not relate to a DC operating condition.

1.2 Peak turn-off current.
The figure given in maximum ratings is the highest value for normal operation of the device under conditions given in note 2 of ratings. A snubber circuit equivalent to that given in diagram 2 is assumed. If a more complex snubber, such as an Underland circuit, is employed then the equivalent C_S should be used and $L_S<0.2\mu H$ must be ensured.

1.3 R.M.S and average current.
Measured as for standard thyristor conditions, double side cooled, single phase, 50Hz, 180° half-sinewave. These are included as a guide to compare the alternative types of GTO thyristors available; values cannot be applied to practical applications, as they do not include switching losses.

1.4 Surge rating and i^2t.
Ratings are for half-sinewave, peak value against duration is given in the curve of figure 2.

1.5 Snubber loop inductance.
Use of GTO thyristors with snubber loop inductance, $L_S<0.2\mu H$ implies no dangerous V_s voltages (see diagrams 2 & 3) can be applied, provided the other conditions given in note 1.2 are enforced. Alternatively V_s should be limited to 800 Volts to avoid possible device failure.

1.6 Gate ratings
The absolute conditions above which the gate may be damaged. It is permitted to allow $V_{GN(AV)}$ during turn-off to exceed V_{RGM} which is the implied DC condition.

Diagram 1.

Diagram 2.

Diagram 3.
2 Characteristics

2.1 Instantaneous on-state voltage
Measured using a 500µs square pulse, see also the curves of figure 1 for other values of \(I_{TM}\).

2.2 Latching and holding current
These are considered to be approximately equal and only the latching current is measured, type test only as outlined below. The test circuit and wave diagrams are given in diagram 4. The anode current is monitored on an oscilloscope while \(V_G\) is increased, until the current is seen to flow during the un-gated period between the end of \(I_G\) and the application of reverse gate voltage. Test frequency is 100Hz with \(I_{GM}\) & \(I_G\) as for \(t_x\) of characteristic data.

![Diagram 4, Latching test circuit and waveforms.](image)

2.3 Critical \(dv/dt\)
The gate conditions are the same as for 1.1, this characteristic is for off-state only and does not relate to \(dv/dt\) at turn-off. The measurement, type test only, is conducted using the exponential ramp method as shown in diagram 5. It should be noted that GTO thyristors have a poor static \(dv/dt\) capability if the gate is open circuit or \(R_{GK}\) is high impedance. Typical values: \(-dv/dt<100V/\mu s\) for \(R_{GK}>10\Omega\).

![Diagram 5, Definition of \(dv/dt\).](image)

2.4 Off-state leakage.
For \(I_{ORM}\) see notes 1.1. For gate leakage \(I_{OK}\), the off-state gate circuit is required to sink this leakage and still maintain minimum of \(-2\) Volts. See diagram 6.

![Diagram 6.](image)

2.5 Gate trigger characteristics.
These are measured by slowly ramping up the gate current and monitoring the transition of anode current and voltage (see diagram 7). Maximum and typical data of gate trigger current, for the full junction temperature range, is given in the curves of figure 4. Only typical figures are given for gate trigger voltage for the full allowable junction temperature range. Figures 4 should be used in when considering forward gate drive circuit requirement. The gate drive requirements should always be calculated for lowest junction temperature start-up condition.
2.6 Turn-on characteristics
The definitions of turn-on parameters used in the characteristic data are given in diagram 8.

2.7 Turn-off characteristics
The definitions of turn-off parameters used in the characteristic data are given in diagram 9.
Curves

Figure 1 - On-state characteristics of Limit device

Figure 2 - Maximum surge and I^2t Ratings
Figure 3 – Instantaneous forward gate characteristics

Figure 4 – Transient thermal impedance
Figure 5 – Typical forward blocking voltage vs. external gate-cathode resistance

Figure 6 – D.C. gate trigger current vs. junction temperature

Figure 7 – Typical turn-on energy per pulse vs. turn-on current

Figure 8 – Maximum turn-on time vs. rate of rise of on-state current
Figure 9 – Typical peak turn-off gate current vs. turn-off current

Figure 10 – Typical gate turn-off charge vs. turn-off current

Figure 11 – Maximum turn-off time vs. turn-off current

Figure 12 – Typical turn-off energy per pulse vs. turn-off current

G3000TF450
Issue 2

$V_{DM} = 0.8V$
$T_j = 125°C$
Outline Drawing & Ordering Information

<table>
<thead>
<tr>
<th>ORDERING INFORMATION</th>
<th>(Please quote 10 digit code as below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3000</td>
<td>TF</td>
</tr>
<tr>
<td>Fixed Type Code</td>
<td>Fixed Outline Code</td>
</tr>
<tr>
<td>45</td>
<td>Fixed Voltage Code V_{drex}/100</td>
</tr>
<tr>
<td>0</td>
<td>Fixed Code</td>
</tr>
</tbody>
</table>

Order code: G3000TF450

IXYS Semiconductor GmbH
Edisonstraße 15
D-68623 Lampertheim
Tel: +49 6206 503-0
Fax: +49 6206 503-627
E-mail: marcom@ixys.de

IXYS Corporation
1590 Buckeye Drive
Milpitas CA 95035-7418
Tel: +1 (408) 457 9000
Fax: +1 (408) 496 0670
E-mail: sales@ixys.net

IXYS UK Westcode Ltd
Langley Park Way, Langley Park,
Chippingham, Wiltshire, SN15 1GE.
Tel: +44 (0)1249 444524
Fax: +44 (0)1249 659448
E-mail: sales@ixysuk.com

IXYS Long Beach
IXYS Long Beach, Inc
2500 Mira Mar Ave, Long Beach
CA 90815
Tel: +1 (562) 296 6584
Fax: +1 (562) 296 6585
E-mail: service@ixyslongbeach.com

www.ixysuk.com
www.ixys.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without prior notice.

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.