WESTCODE

Data Sheet Issue:- 1

Phase Control Thyristor Types N0882NC400 to N0882NC450

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{DRM}	Repetitive peak off-state voltage, (note 1)	4000-4500	V
V _{DSM}	Non-repetitive peak off-state voltage, (note 1)	4000-4500	V
V _{RRM}	Repetitive peak reverse voltage, (note 1)	4000-4500	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	4100-4600	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
$I_{T(AV)}$	Mean on-state current. T _{sink} =55°C, (note 2)	882	А
$I_{T(AV)}$	Mean on-state current. T _{sink} =85°C, (note 2)	616	А
$I_{T(AV)}$	Mean on-state current. T _{sink} =85°C, (note 3)	383	А
I _{T(RMS)}	Nominal RMS on-state current. T _{sink} =25°C, (note 2)	1724	А
I _{T(d.c.)}	D.C. on-state current. T _{sink} =25°C, (note 4)	1536	А
I _{TSM}	Peak non-repetitive surge t_p =10ms, V_m =0.6 V_{RRM} , (note 5)	7700	А
I _{TSM2}	Peak non-repetitive surge t_p =10ms, V_m ≤10V, (note 5)	8470	А
l²t	$I^{2}t$ capacity for fusing t _p =10ms, V _m =0.6V _{RRM} , (note 5)	296×10 ³	A ² s
l²t	$I^{2}t$ capacity for fusing t _p =10ms, V _m ≤10V, (note 5)	359×10 ³	A ² s
-1: /-14	Maximum rate of rise of on-state current (repetitive), (Note 6)	150	A/µs
di⊤/dt	Maximum rate of rise of on-state current (non-repetitive), (Note 6)	300	A/µs
V _{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	4	W
P_{GM}	Peak forward gate power	30	W
V_{GD}	Non-trigger gate voltage, (Note 7)	0.25	V
T _{HS}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes: -

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_j initial.
- 6) V_D=67% V_DRM, I_TM=500Å, I_FG=1Å, t_r $\leq 0.5 \mu s$, T_{case}=125°C.
- 7) Rated V_{DRM}.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	2.98	I _{TM} =1830A	V
V ₀	Threshold voltage	-	-	1.30		V
r _S	Slope resistance	-	-	0.92		mΩ
dv/dt	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM} , linear ramp, gate o/c	V/µs
I _{DRM}	Peak off-state current	-	-	100	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	100	Rated V _{RRM}	mA
V _{GT}	Gate trigger voltage	-	-	3.0		V
I _{GT}	Gate trigger current	-	-	300	T _j =25°C, V _D =10V, I _T =2A	mA
I _H	Holding current	-	-	1.0	T _j =25°C	Α
t _{gd}	Gate controlled turn-on delay time	-	0.6	1.4	V _D =80%V _{DRM} , I _{TM} =1000A, di/dt=10A/µs,	μs
t _{gt}	Turn-on time	-	2.8	4.0	I _{FG} =2A, t _r =0.5μs, Τ _j =25°C	
Qrr	Recovered Charge	-	4700	-		μC
Q _{ra}	Recovered Charge, 50% chord	-	1700	2200	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs,	μC
l _{rm}	Reverse recovery current	-	100	-	V _r =50V	А
t _{rr}	Reverse recovery time, 50% chord	-	30	-		μs
+	Turn-off time	-	700	850	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs, V _r =50V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/μs	
t _q		-	1075	1200	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs, V _r =50V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/μs	μs
D	Thermal resistance, junction to heatsink	-	-	0.024	Double side cooled	K/W
R _{th(j-hs)}		-	-	0.048	Single side cooled	K/W
F	Mounting force	19	-	26		kN
Wt	Weight	-	510	-		g

Notes: -

1) Unless otherwise indicated $T_j=125^{\circ}C$.

Notes on Ratings and Characteristics

Voltage Grade	Vdrm Vdsm Vrrm V	V _{RSM} V	V _D V _R DC V
40	4000	4100	2000
42	4200	4300	2040
44	4400	4500	2080
45	4500	4600	2100

1.0 Voltage Grade Table

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 300A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 150A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

6.0 Gate Drive

The recommended pulse gate drive is 30V, 30Ω with a short-circuit current rise time of not more than 0.5µs. This gate drive must be applied when using the full di/dt capability of the device.

The pulse duration may need to be configured according to the application but should be no shorter than 20µs, otherwise an increase in pulse current may be needed to supply the necessary charge to trigger.

7.0 Computer Modelling Parameters

7.1 Device Dissipation Calculations

Where V₀=1.30V, r_s =0.92m Ω ,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.03047	0.03035	0.02857	0.02733	0.02569	0.0242	0.024
Square wave Single Side Cooled	0.05823	0.0577	0.05408	0.05286	0.05121	0.0497	0.048
Sine wave Double Side Cooled	0.0303	0.0275	0.0262	0.02524	0.024		
Sine wave Single Side Cooled	0.05588	0.05323	0.05186	0.05089	0.048		

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.46	2.45	2	1.73	1.41	1.15	1
Sine wave	3.98	2.78	2.22	1.88	1.57		

7.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 5 is represented in two ways;

- (i) the well established V_0 and r_s tangent used for rating purposes and
- a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients			125°C Coefficients
Α	1.309129	А	0.127546953
В	0.03313115	В	0.3431981
С	4.240333x10 ⁻⁴	С	1.363618 x10 ⁻³
D	4.47 x10 ⁻³	D	-0.05192086

7.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}} \right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- $r_{t} =$ Thermal resistance at time t.
- r_p = Amplitude of p_{th} term.
- τ_p = Time Constant of r_{th} term.

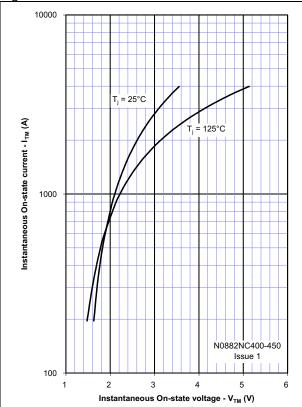
D.C. Single Side Cooled							
Term	1 2 3 4						
r _p	0.02852028	6.529239x10 ⁻³	9.588999×10 ⁻³	4.395357x10 ⁻³			
$ au_{ m p}$	6.388123	3.301838	0.2277620	12.95898x10 ⁻³			

D.C. Double Side Cooled							
Term	Term 1 2 3 4 5						
r _p	0.01258158	5.616905x10 ⁻³	2.450566x10 ⁻³	2.454577x10 ⁻³	0.2714915x10 ⁻³		
τρ	0.9103414	0.1399022	50.86435x10 ⁻³	9.193607x10 ⁻³	2.357793x10 ⁻³		

8.0 Reverse recovery ratings

i.e.

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1.


(ii) Q_{rr} is based on a 150µs integration time.

. 150 µs

$$Q_{rr} = \int_{0}^{150\mu s} i_{rr} dt$$
$$K \ Factor = \frac{t1}{t2}$$

Curves

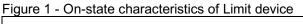
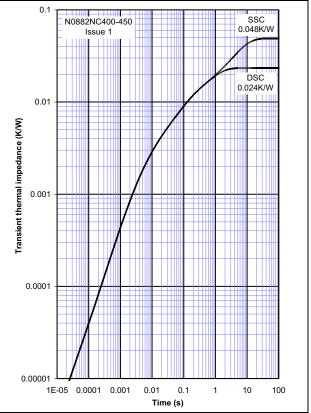
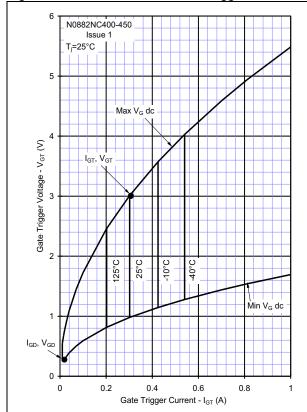


Figure 2 - Transient Thermal Impedance

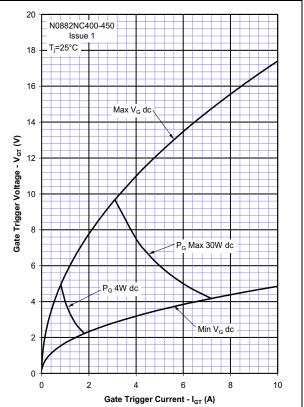
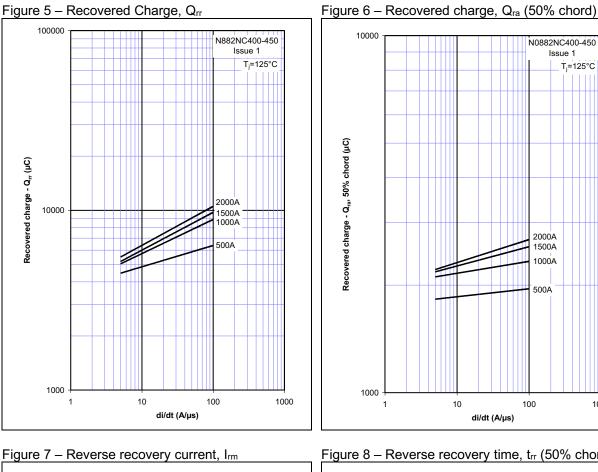


Figure 3 - Gate Characteristics – Trigger Limits

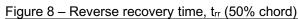
N0882NC400-450

Issue 1

2000A 1500A


1000A

500A


100

1000

T_i=125°C

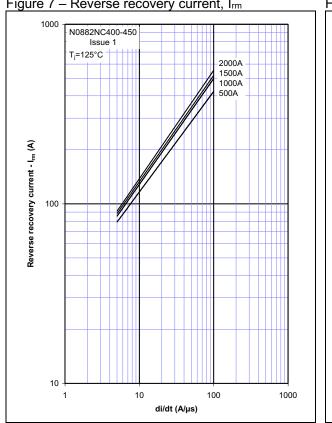


Figure 5 – Recovered Charge, Qrr

di/dt (A/µs)

10

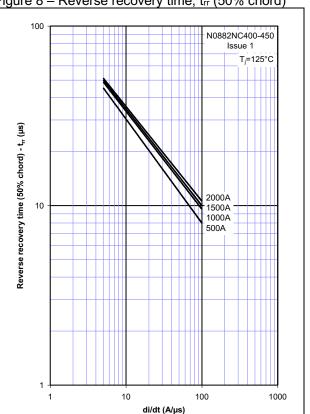


Figure 9 - On-state current vs. Power dissipation -Double Side Cooled (Sine wave)

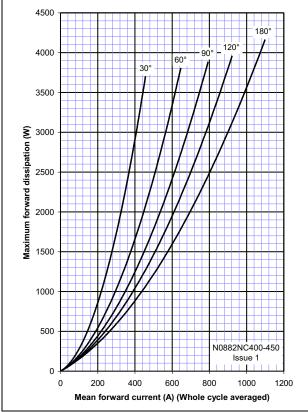
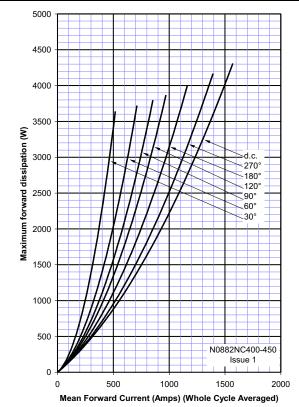



Figure 11 – On-state current vs. Power dissipation – Figure 12 – On-state current vs. Heatsink Double Side Cooled (Square wave)

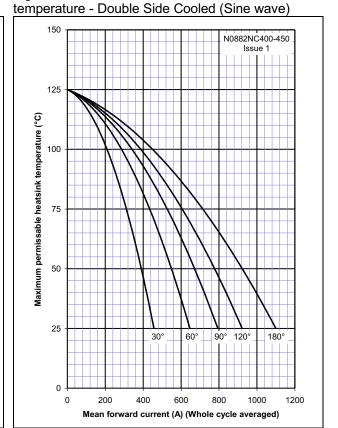
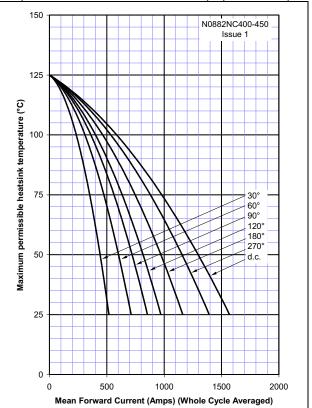



Figure 10 – On-state current vs. Heatsink

temperature - Double Side Cooled (Square wave)

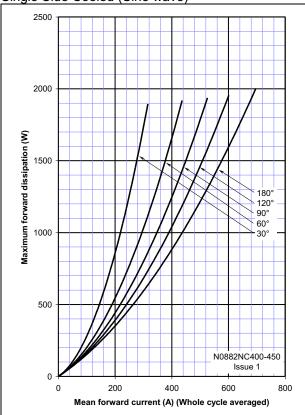
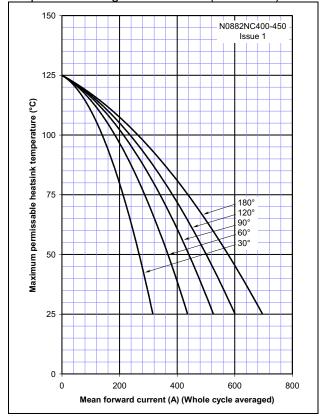
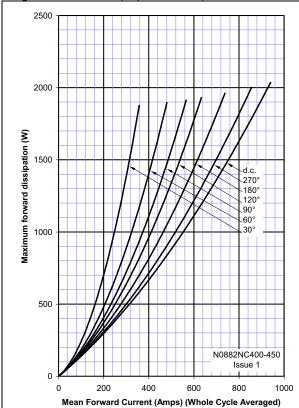
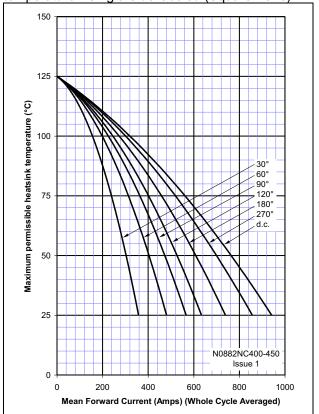
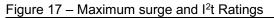
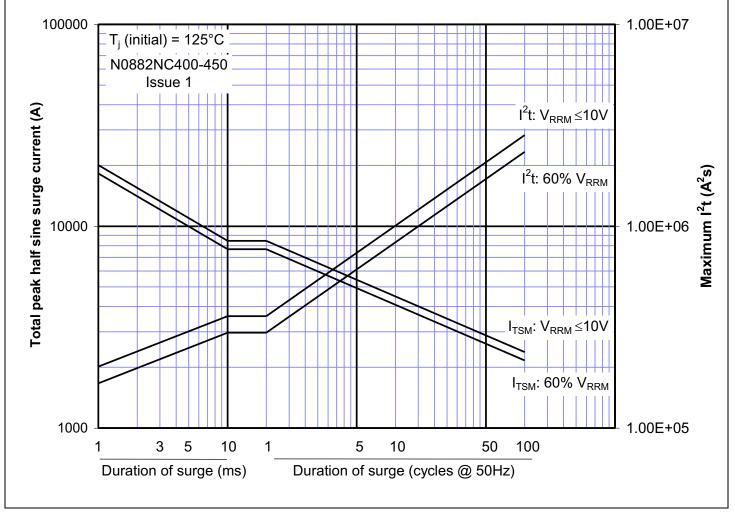




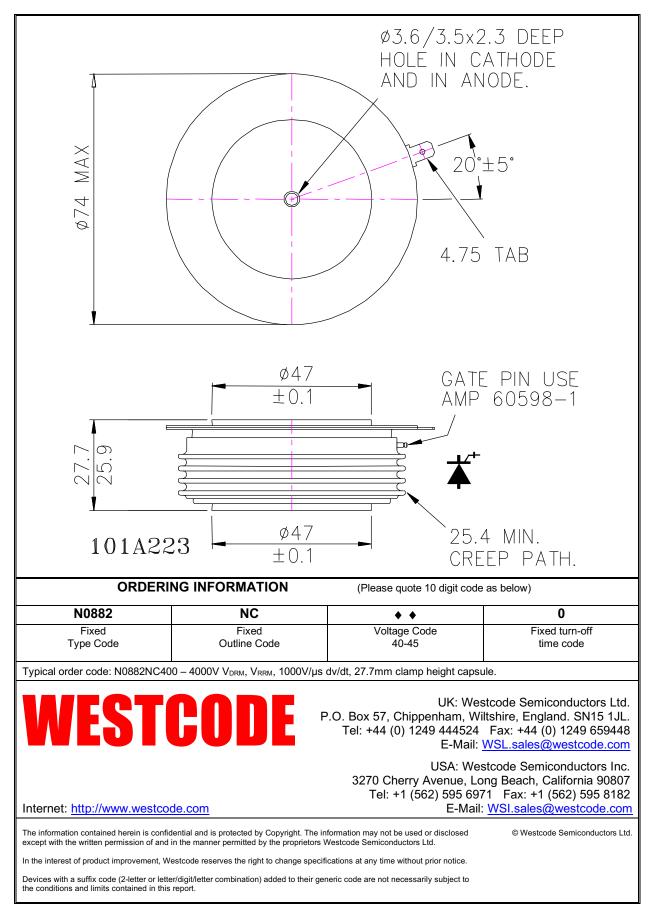
Figure 13 – On-state current vs. Power dissipation – Figure 14 – On-state current vs. Heatsink Single Side Cooled (Sine wave)


temperature - Single Side Cooled (Sine wave)


Figure 15 - On-state current vs. Power dissipation - Figure 16 - On-state current vs. Heatsink Single Side Cooled (Square wave)



Data Sheet. Types N0882NC400 to N0882NC450 Issue 1.


temperature - Single Side Cooled (Square wave)

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.