GEN2 SiC Schottky Diode
LSIC2SD120A10, 1200 V, 10 A, TO-220-2L

Description
This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

Features
- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability
- Extremely fast, temperature-independent switching behavior
- Dramatically reduced switching losses compared to Si bipolar diodes

Applications
- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
- Uninterruptible power supplies
- Solar inverters
- Industrial motor drives
- EV charging stations

Environmental
- Littelfuse “RoHS” logo = RoHS conform
- Littelfuse “HF” logo = Halogen Free
- Littelfuse “PB-free” logo = PB–free lead plating

Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Peak Reverse Voltage</td>
<td>V_{PRM}</td>
<td>-</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC Blocking Voltage</td>
<td>V_B</td>
<td>$T_J = 25 ^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Forward Current</td>
<td>I_F</td>
<td>$T_C = 25 ^\circ C$</td>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 125 ^\circ C$</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 151 ^\circ C$</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Non-Repetitive Forward Surge Current</td>
<td>I_{FSM}</td>
<td>$T_C = 25 ^\circ C, T_J = 10$ ms, Half sine pulse</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{tot}</td>
<td>$T_C = 25 ^\circ C$</td>
<td>136</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 110 ^\circ C$</td>
<td>59</td>
<td>W</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>-</td>
<td>-55 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>T_{solder}</td>
<td>-</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

© 2017 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: 10/02/17
Electrical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F = 10 \ A, T_J = 25 ^\circ C$</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 10 \ A, T_J = 175 ^\circ C$</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I_R</td>
<td>$V_R = 1200 \ V, T_J = 25 ^\circ C$</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 1200 \ V, T_J = 175 ^\circ C$</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Total Capacitance</td>
<td>C</td>
<td>$V_R = 1 \ V, f = 1 \ MHz$</td>
<td>-</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 400 \ V, f = 1 \ MHz$</td>
<td>-</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 800 \ V, f = 1 \ MHz$</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Total Capacitive Charge</td>
<td>Q_C</td>
<td>$V_R = 800 \ V, \int_0^{V_R} V dV$</td>
<td>-</td>
<td>57</td>
</tr>
</tbody>
</table>

Footnote: $T_J = +25 ^\circ C$ unless otherwise specified

Thermal Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>R_{th}</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure 1: Typical Forward Characteristics

Figure 2: Typical Reverse Characteristics
GEN2 SiC Schottky Diode
LSIC2SD120A10, 1200 V, 10 A, TO-220-2L

Figure 7: Stored Energy vs. Reverse Voltage

![Graph showing stored energy vs. reverse voltage](image)

Figure 8: Transient Thermal Impedance

![Graph showing transient thermal impedance](image)

Part Numbering and Marking System

- **SIC** = SiC Diode
- **2** = Gen2
- **SD** = Schottky Diode
- **120** = Voltage Rating (1200 V)
- **A** = TO-220-2L
- **10** = Current Rating (10 A)
- **YY** = Year
- **WW** = Week
- **E** = Special Code
- **ZZZZZ-ZZ** = Lot Number

Packing Options

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>Packing Mode</th>
<th>M.O.Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSIC2SD120A10</td>
<td>SIC2SD120A10</td>
<td>Tube</td>
<td>1000</td>
</tr>
</tbody>
</table>
GEN2 SiC Schottky Diode
LSIC2SD120A10, 1200 V, 10 A, TO-220-2L

Dimensions-Package TO-220-2L

Symbol	Millimeters
Min	Nominal
A | 4.320 | 4.450 | 4.570 |
A1 | 1.140 | 1.270 | 1.400 |
A2 | 2.500 | - | 2.740 |
b | 0.690 | - | 0.880 |
b1 | 0.680 | - | 0.870 |
b2 | 1.230 | - | 1.390 |
b3 | 1.220 | 1.270 | 1.380 |
c | 0.360 | - | 0.503 |
c1 | 0.630 | - | 0.527 |
D | 14.900 | - | 15.600 |
D1 | 8.615 | - | 9.017 |
D2 | 12.840 | - | 12.950 |
E | 10.000 | 10.180 | 10.360 |
E1 | 7.570 | 7.610 | 7.680 |
e1 | 2.490 | 2.540 | 2.590 |
e | 5.030 | 5.080 | 5.130 |
H1 | 6.295 | 6.545 | 6.795 |
L | 13.000 | 13.500 | 14.00 |
L1 | 2.390 | - | 3.250 |
ØP | 3.710 | 3.840 | 3.960 |
Q | 2.650 | - | 3.050 |
R | - | - | 0.254 |

Recommended Solder Pad Layout

Notes:
1. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 MM PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF PLASTIC BODY.
2. DIMENSIONS E2 & H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES BE ALLOWED.
Disaster Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.