Description

The SP5001 Series is a highly integrated Common Mode Filter (CMF) providing both ESD protection and EMI common mode noise filtering for systems using high speed differential serial interfaces, such as MIPI D-PHY or HDMI.

The SP5001 Series can protect and filter two differential line pairs in a small RoHS-compliant TDFN-10 package, with cost and space savings over discrete solutions.

Features

- Large differential bandwidth > 2.5 GHz
- High Common Mode Stop Band Attenuation:
 - > 25 dB at 700 MHz
 - > 30 dB at 800 MHz
- ±15kV ESD protection per channel (IEC 61000-4-2 Level 4, contact discharge and ±30kV air discharge)
- TDFN-10 2.50mm × 2.00mm × 0.75mm package with 0.50mm lead pitch
- RoHS-compliant, Lead-free packaging
- Moisture Sensitivity Level (MSL-1)

Applications

- HDMI/DVI Display in Mobile Phones
- MIPI D-PHY (CSI-2, DSI, etc) in Mobile Phones and Digital Still Cameras

Pinout

- **Pinout Diagram**
 - **In 1+**: Pin 1
 - **In 1-**: Pin 2
 - **GND**: Pin 3
 - **In 2+**: Pin 4
 - **In 2-**: Pin 5
 - **Out 1+**: Pin 6
 - **Out 1-**: Pin 7
 - **Out 2+**: Pin 8
 - **Out 2-**: Pin 9
 - **GND**: Pin 10

 Note: This drawing is not to scale.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the component. This is a stress only rating and operation of the component at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDC</td>
<td>DC Current Per Line</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>PDC</td>
<td>DC Package Power Rating</td>
<td>0.5</td>
<td>W</td>
</tr>
<tr>
<td>TOP</td>
<td>Operating Temperature</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>STOR</td>
<td>Storage Temperature</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics (TOP=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Resistance</td>
<td>RCH</td>
<td>Pins 1−10, 2−9, 4−7 and 5−6</td>
<td>8.0</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Channel Capacitance</td>
<td>CTOTAL</td>
<td>VIO = 1.65VDC, Reverse Bias; f=1MHz, 30mVAC</td>
<td>0.8</td>
<td>1.3</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Reverse Standoff Voltage</td>
<td>VRWM</td>
<td>5.0</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>VR</td>
<td>I=1mA</td>
<td>6.0</td>
<td>8.0</td>
<td>10.0</td>
<td>V</td>
</tr>
<tr>
<td>Forward Voltage at I</td>
<td>VF</td>
<td>I=1mA</td>
<td>0.4</td>
<td>0.7</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>ILEAK</td>
<td>VIO =3.3V</td>
<td>0.01</td>
<td>0.10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Dynamic Resistance</td>
<td>Rdyn</td>
<td>Positive (tp=8/20μs)</td>
<td>1.3</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative (tp=8/20μs)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLP, tp=100ns, I/O to GND</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Withstand Voltage</td>
<td>VESD</td>
<td>IEC 61000-4-2 (Contact Discharge)</td>
<td>±15</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 61000-4-2 (Air Discharge)</td>
<td>±30</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Mode Cutoff Frequency</td>
<td>F3dB</td>
<td>ZSOURCE=50Ω, ZLOAD50Ω</td>
<td>2.5</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Mode Stop Band Attenuation</td>
<td>Fα</td>
<td>f=800MHz</td>
<td>30</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. ESD zapping at I/O pins (1,2,4,5) with respect to GND.
2. Guaranteed by design.
3. Transmission Line Pulse (TLP) with 100ns width and 200ps rise time.

Differential Mode Attenuation SDD21 vs. Frequency (Zdiff = 100Ω)

![Differential Mode Attenuation SDD21 vs. Frequency](image1)

Common Mode Attenuation SCC21 vs. Frequency (Zcomm= 50Ω)

![Common Mode Attenuation SCC21 vs. Frequency](image2)
TVS Diode Array (SPA® Diodes)
Low Capacitance ESD Protection - SP5001 Series

Differential Return Loss SDD11 vs. Frequency (Zdiff = 100Ω)

Differential Return Loss SDD22 vs. Frequency (Zdiff = 100Ω)

Transmission Line Pulsing (TLP) Plot

Part Numbering System

Part Marking System

Soldering Parameters

Ordering Information

© 2019 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: 09/19/19
Package Dimensions – TDFN-10

Tape & Reel Specification – TDFN-10

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

© 2019 Littelfuse, Inc.
Specifications are subject to change without notice.
Revised: 06/18/19