Description

The SRDA3.3 integrates low capacitance rail-to-rail diodes with an additional zener diode to protect I/O pins against ESD and lightning induced surge events. This device can safely absorb up to 35A per IEC61000-4-5 (tp=8/20μs) without performance degradation and a minimum ±30kV ESD per IEC61000-4-2 international standard. Its low loading capacitance makes it ideal for high-speed interface protection.

Features

- Lightning protection, IEC61000-4-5, 35A (8/20μs)
- EFT, IEC61000-4-4, 50A (5/50ns)
- ESD, IEC61000-4-2, ±30kV contact, ±30kV air
- Low clamping voltage
- Low leakage current
- SOIC-8 surface mount package (JEDEC MS-012)

Applications

- Tertiary (IC Side) Protection:
 - T1/E1/T3/E3
 - HDSL/SDSL
 - Ethernet
- RS232, RS485
- Video Line Protection
- Security Cameras
- Storage DVRs
- Network Equipment
- Instrumentation, Medical Equipment

Application Example

The SRDA3.3 Series 8pF 35A Diode Array provides protection against ESD and lightning induced surge events. It is suitable for use in various applications such as T1/E1/T3/E3 interface protection, HDSL/SDSL, Ethernet, RS232, RS485, and more. The device can safely absorb up to 35A without performance degradation and can handle ±30kV ESD per IEC61000-4-2 international standard. Its low loading capacitance makes it ideal for high-speed interface protection.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Pulse Power (8/20μs)</td>
<td>P_{pp}</td>
<td>600</td>
<td>W</td>
</tr>
<tr>
<td>Peak Pulse Current (8/20μs)</td>
<td>I_{pm}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{op}</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STOR}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Characteristics ($T_{op} = 25°C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Stand-Off Voltage</td>
<td>V_{RWM}</td>
<td>$I_{f} \leq 1$μA</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Breakdown Voltage</td>
<td>V_{BR}</td>
<td>$I_{f} \leq 2$μA</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Snap Back Voltage</td>
<td>V_{SB}</td>
<td>$I_{f} = 50$mA</td>
<td>2.9</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>I_{R}</td>
<td>$V_{f} = 3.3$V</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>Clamping Voltage, Line-Ground</td>
<td>V_{C}</td>
<td>$I_{f} \leq 1$A, $t_{p} = 8/20$ μs</td>
<td>-</td>
<td>5.7</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Clamping Voltage, Line-Ground</td>
<td>V_{C}</td>
<td>$I_{f} \leq 10$A, $t_{p} = 8/20$ μs</td>
<td>-</td>
<td>10.1</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Clamping Voltage, Line-Ground</td>
<td>V_{C}</td>
<td>$I_{f} \leq 30$A, $t_{p} = 8/20$ μs</td>
<td>-</td>
<td>17.7</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Dynamic Resistance, Line-Ground</td>
<td>R_{DYN}</td>
<td>$(V_{C2} - V_{C1})/(I_{PP2} - I_{PP1})$</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>ESD Withstand Voltage</td>
<td>V_{ESD}</td>
<td>IEC61000-4-2 (Contact Discharge)</td>
<td>±30</td>
<td>-</td>
<td>-</td>
<td>kV</td>
</tr>
<tr>
<td>Diode Capacitance</td>
<td>$C_{O-I/O}$</td>
<td>Reverse Bias=0V</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>C_{O-GND}</td>
<td>Reverse Bias=0V</td>
<td>-</td>
<td>8.0</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

1 Parameter is guaranteed by design and/or device characterization.

Normalized Capacitance vs. Bias Voltage

Non-Repetitive Peak Pulse Power vs. Pulse Time
Clamping Voltage vs. \(I_{PP} \)

- **Clamping Voltage** \(V_C \) (V)
 - 20
 - 10
 - 2
 - 1
 - 0

- **Peak Pulse Current** \(I_{PP} \) (A)
 - 5
 - 15
 - 25
 - 30
 - 35

Power Derating Curve

- **% of Rated Power or \(I_{PP} \)**
 - 110
 - 100
 - 90
 - 80
 - 70
 - 60
 - 50
 - 40
 - 30
 - 20
 - 10

- **Ambient Temperature** \(T_A \) (°C)
 - 0
 - 25
 - 50
 - 75
 - 100
 - 125
 - 150

Pulse Waveform

- **Percent of \(I_{PP} \)**
 - 110%
 - 100%
 - 90%
 - 80%
 - 70%
 - 60%
 - 50%
 - 40%
 - 30%
 - 20%
 - 10%
 - 0%

- **Time** (μs)
 - 0.0
 - 5.0
 - 10.0
 - 15.0
 - 20.0
 - 25.0
 - 30.0

Product Characteristics

- **Lead Plating**: Matte Tin
- **Lead Material**: Copper Alloy
- **Lead Coplanarity**: 0.0004 inches (0.102mm)
- **Substitute Material**: Silicon
- **Body Material**: Molded Epoxy
- **Flammability**: UL 94 V-0

Notes:
1. All dimensions are in millimeters.
2. Dimensions include solder plating.
3. Dimensions are exclusive of mold flash & metal burr.
4. Blo is facing up for mold and facing down for trim/form, i.e. reverse trim/form.

Soldering Parameters

- **Reflow Condition**: Pb – Free assembly
- **Pre Heat**
 - Temperature Min \(T_{S(min)} \): 150°C
 - Temperature Max \(T_{S(max)} \): 200°C
 - Time (min to max) \(t_s \): 60 – 180 secs
- **Average ramp up rate (Liquidus) Temp \(T_L \) to peak**
 - 3°C/second max
- **\(T_{S(max)} \) to \(T_L \) - Ramp-up Rate**
 - 3°C/second max
- **Reflow**
 - Temperature \(T_L \) (Liquidus)
 - 217°C
 - Temperature \(T_f \)
 - 60 – 150 seconds
- **Peak Temperature \(T_P \)**
 - 260°C
- **Time 5°C of actual peak Temperature \(t_{f} \)**
 - 20 – 40 seconds
- **Ramp-down Rate**
 - 6°C/second max
- **Time 25°C to peak Temperature \(T_P \)**
 - 8 minutes Max.
- **Do not exceed**
 - 260°C
Part Numbering System

SRDA 3.3 - 4 BTG

- **G**: Green
- **T**: Tape & Reel
- **B**: SOIC-8
- **4**: 4 Channels

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Marking</th>
<th>Min. Order Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRDA3.3-4BTG</td>
<td>SOIC-8</td>
<td>SRDA3.3</td>
<td>2500</td>
</tr>
</tbody>
</table>

Package Dimensions — Mechanical Drawings and Recommended Solder Pad Outline

- **JEDEC MS-012**
- **Dimensions**
 - **A**: 1.35 - 1.75 mm, 0.053 - 0.069 inches
 - **A1**: 0.10 - 0.25 mm, 0.004 - 0.010 inches
 - **A2**: 1.25 - 1.65 mm, 0.050 - 0.065 inches
 - **B**: 0.31 - 0.51 mm, 0.012 - 0.020 inches
 - **c**: 0.17 - 0.25 mm, 0.007 - 0.010 inches
 - **D**: 4.80 - 5.00 mm, 0.189 - 0.200 inches
 - **E**: 5.80 - 6.20 mm, 0.228 - 0.244 inches
 - **E1**: 3.80 - 4.00 mm, 0.150 - 0.157 inches
 - **e**: 1.27 BSC
 - **L**: 0.40 - 1.27 mm, 0.016 - 0.050 inches

Recommended Soldering Pad Outline (Reference Only)

Embossed Carrier Tape & Reel Specification — SOIC Package

- **Dimensions**
 - **E**: 1.65 - 1.85 mm, 0.065 - 0.073 inches
 - **F**: 5.4 - 5.6 mm, 0.213 - 0.220 inches
 - **P2**: 1.95 - 2.05 mm, 0.077 - 0.081 inches
 - **D**: 1.5 - 1.6 mm, 0.059 - 0.063 inches
 - **D1**: 1.50 Min, 0.059 Min
 - **P0**: 3.9 - 4.1 mm, 0.154 - 0.161 inches
 - **10P0**: 40.0 +/- 0.20 mm, 1.574 +/- 0.008 inches
 - **W**: 11.9 - 12.1 mm, 0.468 - 0.476 inches
 - **P**: 7.9 - 8.1 mm, 0.311 - 0.319 inches
 - **A0**: 6.3 - 6.5 mm, 0.248 - 0.256 inches
 - **B0**: 5.1 - 5.3 mm, 0.2 - 0.209 inches
 - **K0**: 2 - 2.2 mm, 0.079 - 0.087 inches
 - **t**: 0.30 +/- 0.05 mm, 0.012 +/- 0.002 inches